Архангельск (8182)63-90-72

Ижевск (3412)26-03-58

Магнитогорск (3519)55-03-13
Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Казахстан (772)734-952-31

Пермь (342)205-81-47

Сургут (3462)77-98-35
Тверь (4822)63-31-35
https://schmersal.nt-rt.ru || sxh@nt-rt.ru
КАТАЛОГ

Online documentation in 13 languages

The online catalogue for our customers is permanently updated. The Main catalogue can be consulted on the Internet in as much as six languages.
The technical data of our entire product range are always up-to-date. The declarations of conformity, the test certificates and the mounting instructions can be consulted or even downloaded as well.

Service for designers

The online catalogue also includes the technical drawings of our products - a special service to designers. In this way, they can be downloaded and directly fed in CAD-systems. The Schmersal homepage furthermore contains up-to-date information on general subjects, technical articles on machine safety as well as news regarding events and trainings. To be bookmarked!

The direct way

If you need further information or you want personal advice, you can call us as well: Tel. +49-(0) 2 02-64 74-0.

We are at your disposal anyplace, anywhere, anytime!

The data specified in this catalogue are carefully checked typical standard values.

Descriptions of technical correlations, details on external control units, installation and operating instructions or similar have been provided to the best of our knowledge. This however does not mean that any warranted characteristics or other properties under
liability law may be assumed, which extend beyond the "General Terms and Conditions of Delivery of Products and Services of the Electrical Industry".

We trust you will understand that the user must check our information and recommendations before using our equipment.

Table of contents

- Technology and user advantages Page
Electronic safety sensors
- Safety sensor RSS 36 - individually codeable, optionally with latching Page 11
- Safety sensor CSS 16 - reliable design Page 17
- Safety sensor CSS 180 - Thermoplastic enclosure M18 Page 23
- Safety sensor CSS 30 - Metal enclosure M30 Page 29
- Safety sensor CSS 30S - Stainless steel enclosure M30 Page 35
- Safety sensor CSS 300 - Thermoplastic enclosure M30 Page 41
- Safety sensor CSS 34 - large variety of actuator designs Page 47
- Safety sensor CSP 34 - paired coding Page 58
Electronic solenoid interlocks and safety switches with separate actuator
Page 63
- Safety switch with interlocking function MZM 100 B Page 65
- Safety switch with interlocking function MZM 120 Page 68
- Solenoid interlock AZM 200 Page 77
- Safety switch with interlocking function AZM 200 B Page 79
■ Solenoid interlock with button and LED AZM 200...-2568 Page 80
- Solenoid interlock AZM 200 D Page 86
- Safety switch with separate actuator AZ 200 Page 90
Accessories
- Control panel BDF 100 Page 99
- Control panel BDF 200 Page 104
- Connectors - extension cable Page 111
Serial diagnostic for function monitoring
- SD-Gateway SD-I-DP-V0-2 - for PROFIBUS Page 114
■ UNIVERSAL-Gateway SD-I-U-... - with different field bus interfaces Page 115
- Y-adapter Page 116
- T-adapter Page 117
- SD junction boxes Page 118
- Connectors - SD connection cables Page 119
Safety controllers for electronic safety sensors and interlocks
- SRB 031MC Page 124
- SRB 201LC Page 126
- SRB 211ST V. 2 Page 128
- SRB 301MA Page 130
- SRB 301MC Page 132
- SRB 301ST V. 2 Page 134
- SRB 324ST V. 3 Page 136
- SRB 504ST Page 138
- PROTECT PE Page 140
- PROTECT PSC Page 142
- PROTECT SELECT Page 147

Electronic Safety Sensors and Solenoid Interlocks

Non-contact - Electronic Safety Sensors

With the CSS technology, the Schmersal Group has developed and patented an electronic operating principle for the non-contact communication between the safety sensor and the actuator. This "Coded Safety Sensor" (CSS) principle guarantees, in addition to a high switching distance, also a high degree of fail-safety and protection against tampering. The sensors can also be actuated misaligned; when the hysteresis limits are reached, a premature warning is emitted to inform the user in due time about possible misalignment of the door.

The electronic monitoring of moving safety guards including actuation in non-contact solenoid interlocks enables the wear-free and noncontact detection of the respective actuator The patented pulseecho-technology permits large tolerances in the approach of the coded actuator, both in the switching distance and the misalignment. Despite this, the switching points and hysteresis are extremely repeatable and constant.

The performance and capabilities of the safety sensors and solenoid interlocks are covered by the following testing standards:

- Defined behaviour under fault conditions to EN 60947-5-3, self-monitoring classification PDF-M
- Requirements on safetyrelated parts up to PL e/category 4 to EN ISO 13849-1
- Requirements of IEC 61508 use up to SIL 3 applications

The requirements of IEC 61508 furthermore guarantee the user extremely high EM interference immunity. In addition, the standard allows that a signal is given for certain failures before the machinery completely switched off. This enables putting the machinery safely to a hold position before being switched off.

The using of microprocessor technology allows an intelligent diagnostic as well as a smooth and fast failure detection, e.g. in case of crossshorts or wiring errors.

The safety channels of the electronic sensors and electronic solenoid interlocks can be wired in series to build a chain of up to 31 components, depending on the type of device used. Because of the independent functional check, PL e/category 4 to EN ISO 13849-1 is retained for this series-wired chain. Due to the selfmonitoring circuit technology and the resulting favourable PFHd values, Sub-SIL 3 or Sub-PL e to IEC 61508 (EN IEC 62061) or EN ISO $13849-1$ is regularly obtained. The
chains can also consist of a mix of the safety sensors and solenoid interlocks described in this brochure.

Operating principle
All products of the CSS series have the same operating principle. They use the pulseecho technology patented by Schmersal to detect the actuator.

The sensor emits electromagnetic pulses. When the actuator approaches the sensor, the actuator starts oscillating at a predetermined resonant frequency due to the induced energy. These oscillations are in turn read by the sensor. While doing this, the sensor evaluates the distance with regard to the actuator as well as the coding of the actuator. The actuator identified by the sensor is interpreted as a closed safety guard and the safety outputs are enabled.

Due to this operating principle, the sensor is not suitable for mounting behind metal walls, considering that the oscillation to be detected cannot penetrate the metal. The CSS 30S stainless steel sensor is an exception here. This sensor can be used under covers in antimagnetic stainless steel.

The RSS 36 is the next step in the safety sensor technology. Considering that the RFID technology is integrated in the RSS 36,

different variants can be generated, each fea turing individual coding possibilities In this way, the suitable tampering protection can be chosen for each application, depending on the requirements. The new electronic RSS 36 safety sensor is, just like the other sensors featuring the CSS technology, suitable for series-wiring in safety circuits whilst offering the highest level of safety and moreover can be combined with all other components from the CSS family. In addition to that, the RSS 36 features an optional, integrated latching function to keep flaps or small doors closed, even in de-energised condition.

Application

The electronic safety sensors and solenoid interlocks are used for monitoring moving safety guards. When the safety guard is opened, the machine is stopped and the dangerous restart of the machine is in all cases suppressed.

Their essential advantage is in the non-contact detection of the safety guard's position. They therefore are completely wear-free and insensitive to misalignment or offset of the sensor and the actuator

Due to their compactness, there are numerous applications for CSS/RSS sensors. Because of their high repeatability, an extremely low
hysteresis and the absence of double switching points in the actuation range, they can be fitted to a wide variety of safety guards or they can be employed for position monitoring on machines axes.

Mounting on aluminium profiles is in particular carried out smoothly and quickly by means of just two screws using the integral mounting plate. Rotating slotted washers in the mounting plate facilitate an accurate alignment, even with naccurate mounting holes.

In this way, the sensors can be used in almost any place where required. The encapsulated sensors and their actuator are insensitive to shocks, vibrations and dirt.

The CSS safety sensors consequently can be used anywhere, especially where protection against dangerous run-down movements of the machine is not required.

The application possibilities, especially for the CSS 34, are further enlarged by the four different actuating planes as well as a large variety of actuators.

The CSS 30S safety sensor with stainless steel enclosure extends the range of application especially for hygienecritical applications.

Due to its high resistance to mechanical or chemical influences, this safety sensor is also perfectly suitable for use in aggressive ambient conditions.

For doors, which are especially sensitive to tampering, the RSS 36 safety sensors with different coding options offer, just like the CSP 34, a high degree of protection against tampering, considering that the adequate coding procedure can be selected.

The CSP 34 is also available with the „on-site acknowledgment" option and integrated reset button connection.

Because of a special feedback circuit monitoring with reset function, the CSS 34F sensors are suitable for the direct control of safety contactors. This enables saving on wiring expenses and avoids the need of buying a dedicated safety controller

Electronic Safety Sensors and Solenoid Interlocks

Safe locking - Electronic solenoid interlocks

Hazardous areas on machinery and plants must remain inaccessible until all dangerous machine movements have come to a standstill. For this reason, safety sensors may not be used. According to EN 1088 solenoid interlocks have to be fitted.

A door offset of approximately 5 mm is permitted with the CSS sensors. The mechanical design of the actuator furthermore enables the swivelling of the complete enclosure, which is fitted to the safety guard.

In this way, irregular sagging of the safety guard can be compensated within large limits, i.e. in this situation, the actuator still can be smoothly and accurately inserted in the switch (AZ 200) or in the solenoid interlock (AZM 200).

This mechanical design feature ensures that the component is not damaged despite the offset of the actuator and the component; this in turn leads to a higher machinery and plant productivity.

AZM 200 solenoid interlock

Because of their separate actuator unit, facilitating the intuitive and ergonomic operation of the safety guard, the AZ and the AZM 200 are particularly suitable for use on safety guards, protective fencing or machine housings.

The actuator unit also enables the integration of an additional sensor, which is used for safety guard monitoring. With the help of this second sensor, PL e/category 4 to EN ISO 13849-1 is realised with only one interlock and one switch on the safety guard. This unique feature replaces the second switch. This saves additional costs for the switch and its fitting.

Interlocks basically can be equipped with the following unlocking features:

Manual release

Machinery fitted with power-to-unlock solenoid interlocks normally have a way of opening the safety guard in case of power failure, usually by means of a tool such as a triangular key. The Schmersal solenoid interlocks are fitted with this kind of auxiliary unlocking mechanism, the so-called "manual release".

Emergency exit

An emergency exit allows an intentional opening of the safety guard from inside the machine without tools, for example when staff are trapped inside a machine. It enables the unlocking and opening of the safety guard with just one hand movement by simply turning the emergency handle located on the inside of the hazardous area.

Power-to-unlock / power-to-lock principle The solenoid interlocks have two different operating principles: the power-to-unlock principle and the power-to-lock principle.

With the power-to-unlock principle, the safety guard is mechanically locked in de-energised condition by a spring and unlocked by energizing the solenoid. With the power-to-lock principle, the safety guard is mechanically locked by magnetic force (i.e. by energizing the solenoid) and unlocked by spring force. As the power-to-lock solenoid interlock can be unlocked in de-energised condition, thus enabling the safety guard to be opened immediately, the use of power-to-unlock solenoid interlocks is strongly recommended for the protection of personnel against hazardous stored energy (e.g. run-on movements).

The AZM 200 is available both as power-tounlock and as power-to-lock version.

MZM 100 electronic magnetic interlock In this new generation of magnetic interlocks, the actuator simultaneously is the armature of the magnet, which is attracted with a force that can be monitored. This interlock can be used for monitoring guard doors or flaps.

The special features of this component are the monitoring of the potential holding force between the armature and the electromagnet means of a measurement of the magnetic parameters and the detection of the armature by means of the CSS principle. This "noncontact" operating principle offers extended adjustment possibilities for both units.

The actuator unit (armature) and the interlocking unit (magnet) build a closed circuit.

Interlocking unit

The interlocking unit is installed on the safety guard; the actuator unit directly on the moveable guard door. To lock the actuator unit, the armature plate must be on the pole shoes of the currentcarrying magnet.

The permanent monitoring of the magnetic parameters guarantees a safe holding force. The component is unlocked by switching off the magnet current.

The interlocking unit is equipped with a dualchannel processor system with redundant structure to measure the holding force and to detect the actuator in the actuator unit; this system furthermore monitors both enabling paths.

These outputs are capable of controlling two contactors or one safety relay combination. They also can be monitored by a safety controller.

The pulse-echo technology prevents defeating of the component by simple means.

Messages and diagnostic

Detecting and displaying

The integral electronics of the electronic safety sensors and the electronic solenoid interlocks allows an extensive diagnostic of the respective operating conditions．

The diagnostic is available in each individual component，but it can also be used when different safety components of the CSS range are serieswired．

The operating status is displayed by the easily visible diagnostic LED＇s located on the component．It is additionally provided through a diagnostic output．To this end，two options can be chosen：the conventional diagnostic output or the serial diagnostic cable．

The diagnostics in the electronic safety sensors RSS，CSS and CSP，the solenoid interlocks AZM 200 and MZM 100 or the electric safety switch AZ 200 is identical，however adapted to the respective function．Further details can be found in the product data sheets in the product section．

Failure

Failures，which no longer guarantee the proper functioning of the safety device（internal failu－ res），will result in an immediate deactivation of the safety outputs．Failures，which do not immediately affect the safety function of the safety device will result in a delayed switch－off．

Failure warning

The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position．

This prevents the breakage of tools and work pieces and increases the machine productivity．

The serial diagnostic

Safety sensors and interlocks with serial diagnostic output have a serial input and output cable instead of the conventional diagnostic （signal）output．If these SD components are daisy－chained，the safety channels as well as the serial diagnostic cables are wired in series． The thus created＂bus line＂or＂collecting main＂ of diagnostic information is passed to a serial diagnostic gateway for monitoring．

In this way，a maximum of 31 components can be consecutively daisychained，also as series－ wiring of different components．

LED functions
Green supply voltage on
Yellow operating status
Red error（refer to flash codes）

Example of the diagnostic function of the AZM 200 solenoid interlock

Display （red）	Flash codes	Meaning	Autonomous switch－off after
1 flash pulse	$\square \square$	Failure（warning）output Y 1	30 min
2 flash pulses	$\square \square$	Failure（warning）output Y2	30 min
3 flash pulses	にに	Failure（warning）cross－wire	30 min
4 flash pulses	凸ワにワ	Failure（warning）over－temperature	30 min
5 flash pulses		Actuator fault	0 min
6 flash pulses		Actuator combination fault	0 min
Continuous red	\ldots	Internal failure	0 min

Serial diagnostic gateways

The SD Gateways for the different field bus systems convert the serial diagnostic signal of the sensors and solenoid interlocks into the desired field bus protocol.

The SG Gateways are available for the following field busses:

- PROFIBUS DP-V0
- PROFINET IO
- DeviceNet
- EtherNet IP
- CC-Link and
- CANopen.

The SD Gateways are integrated as slave in the available field bus system. In this way, the diagnostic signals can be evaluated through the connected control system.

Every connected safety sensor/solenoid interlock loads status signals, warning or failure messages to the linked PLC. The PLC sends control commands to the components of the series-connected chain, e.g. to unlock a solenoid interlock.

This concept has multiple advantages: not only the amount of wiring is considerably reduced, it furthermore provides useful information about each participating sensor and the control of the individual interlock releases from the connected PLC.

This function can considerably reduce machine downtime.

Serial diagnostic in the series-wiring of safety sensors/switches/solenoid interlocks

Legend
Sensors with the serial

Electronic Safety Sensors and Solenoid Interlocks

Safe evaluation

The Schmersal Group offers the user different application-oriented safety-monitoring modules for the safe signal evaluation.

The PROTECT range includes, amongst other things, safety-monitoring modules, safe compact controllers and a safe modular safety controller. These safety-monitoring modules are destined to the typical applications in safety-related parts of control systems of machinery. Examples of items that are safely evaluated are: the signal processing of emer-gency-stop control devices, interlocking devices, magnetic safety switches, optoelectronic safety devices and safety switchgear featuring the CSS technology with p-type outputs.

The use of electronic control systems is only useful when the safety circuits feature a certain degree of complexity. The applicable rule of thumb here is: as soon four safety-monitoring modules are used in a safety-related application, the use of the PROTECT SELECT compact controller or the PROTECT PSC programmable electronic controller should be considered.

Most of the currently marketed programmable electronic safety control systems for machine safety meet the requirements of EN ISO 13849-1 (PL e) and have a 24 VDC power supply. Selection and decision criterions of prime importance therefore are the number of inputs and outputs, their technology (inputs with or without potential either semi-conductor or relay outputs) as well as the enclosure design.

The Schmersal Group offers excellent solutions for these three fields of application. As of page 121 , you will find a selection of safety-monitoring modules of the PROTECT SRB series; details regarding the PROTECT SELECT compact controller can be found as of page 147 More information on the modular PROTECT PSC programmable electronic systems is included on page 142.

EC-Conformity to the

 new Machinery DirectiveThe design, labelling and included operating instructions of all PROTECT modules described in this brochure meet the requirements of the EC Machinery Directive 2006/42/EC. As logic controllers to ensure the safety functions, they come under Appendix IV, and as a consequence, they are subject to a special quality assurance system (= comprehensive quality assurance system to Appendix X of the Machinery Directive) during their development and production.

The Schmersal Group has implemented a quality assurance system certified by TÜV Rhineland and therefore is qualified and authorised to execute the machinery conformity assessment procedure, which is described in Appendix X of the Machinery Directive, including the components to ensure a safety function.

Electronic safety sensor RSS 36

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508

Actuation advantages

- Non-contact principle, no mechanical wear
- Higher protection against tampering because of the optional individual coding
of the safety sensor and the actuator
- Optionally version with latching available
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Unlimited number of devices in the series-wiring, however - fuse-dependent max. 31 devices in case of serial diagnostic in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation, e.g. sagging of a safety guard

Sensor RSS 36

-Thermoplastic enclosure

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Increased protection against tampering by optional individual coding of safety sensor and actuator
- Optional version with latching available
- Safety and diagnostic signals can be wired in series
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet
-LED status indication
- Sensor with connecting cable or with integrated connector
- Robust due to the used cleaning agent-resistant materials and protection class up to IP 69 K

Approvals

THV
 (【u) ECOLAB

Ordering details

RSS 36 (1)-(2)-(3)-(4)
No. | Option | Description

(1)	IT	Standard coding Individual coding (2)
(3)	I2	Individual coding, unlimited With diagnostic output
(4)	R	With serial diagnostic Without latching with latching, latching force approx. 18 N
	ST With connecting cable 2 m With integrated connector M12	

Actuator, sealing kit and tamper-proof screws must be ordered separately.

Actuator RST 36-1

Technical data

Rated insulation voltage U_{i} :
Rated impulse withstand
voltage $\mathrm{U}_{\text {imp }}$:
32 V

No-load current I_{0} :
800 V

Protection class: 35 mA

Overvoltage category:
Degree of pollution:
Safety inputs X1/X2:
Rated operating
voltage $U_{\text {e1 }}: \quad 24$ VDC $-15 \% /+10 \%$ (PELV to IEC 60204-1)
Current consumption per input: 5 mA
Safety outputs Y1/Y2: p-type, short-circuit proof
R ated operating current $\mathrm{I}_{\mathrm{e} 1}$: max. 0.25 A
Utilisation category: DC-12: $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}}: 24 \mathrm{VDC} / 0.25 \mathrm{~A}$ DC-13: Ue $/ l_{\mathrm{e}}: 24 \mathrm{VDC} / 0.25 \mathrm{~A}$
Voltage drop:
Diagnostic output:
<1 V p-type, short-circuit proof
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category: DC-12: $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}}: 24 \mathrm{VDC} / 0.05 \mathrm{~A}$ DC-13: Ue/le: $24 \mathrm{VDC} / 0.05 \mathrm{~A}$

Voltage drop:
Serial diagnostic:
Operating current:
Wiring capacitance for
serial diagnostic:
External cable protection:

- Integrated connector:
short-circuit proof
150 mA
max. 50 nF
Fuse
2.0 A
4.0 A

Please observe the cable section of the lead-on cable

LED functions:

Green
Yellow
Red
Supply voltage on
Operating status

Classification:

Standards:
EN ISO 13849-1, IEC 61508,
IEC 62061
PL:
Category:
PFH:
PFD:
$2.7 \times 10^{-10} / \mathrm{h}$
2.1×10^{-5}
SIL:
Mission time:

Note

Requirements for the safety controller

Dual-channel safety input, suitable for p-type sensors with normally-open (NO) function. The internal function tests of the sensors cause the outputs to cyclically switch off for max. 0.25 ms , this must be tolerated by the safety controller. The safety controller must not be equipped with cross-wire detection.

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUS-Gateway SD-I-DPV0-2 and the Universal-Gateway SD-I-U-... . and in the inctrurtinne fnr the intorratinn of the confatomav

Misalignment

Lateral actuation

The axial misalignment (Y) is max. $\pm 18 \mathrm{~mm}$.
The height misalignment (X) is max. $\pm 8 \mathrm{~mm}$.

Latching versions $X \pm 5 \mathrm{~mm}, \mathrm{Y} \pm 3 \mathrm{~mm}$.
The latching force is reduced by misalignment.

Actuating curves

The actuating curves (S) represent the typical switching distance of the safety sensor during
the approach of the actuator subject to the actuating direction.

Transverse misalignment

S [mm] 12

Height misalignment

Preferred actuating directions:
from front or from side

Coding procedure

Ordering option -l1:

During the individual coding, a RST actuator is taught by a simple routine during the start-up procedure, so that every form of tampering by means of a replacement or substitute actuator is permanently excluded.

Ordering option -I2:

Teaching the individual coding of a RST actuator by a simple routine during the start-up procedure (as -I1). A protected coding process enables the teaching of a new actuator for service purposes.

System components

Sealing kit

Ordering details

Sealing kit ACC RSS 36-SK
for sealing the mounting holes and as spacer (approx. 3 mm) to facilitate the cleaning below the mounting surface (also suitable as tampering protection for the screw fastening)

Tamperproof screws (not displayed)
NRS-M4X25-FHS-4PCS
101217746
NRS-M4X30-FHS-4PCS

Series-wiring of the RSS 36 with conventional diagnostic output

Y1 and Y2 = Safety outputs \rightarrow Safety controller

The voltage is supplied to both safety inputs of the last safety sensor of the chain (considered from the safety-monitoring module). The safety outputs of the first safety sensor are wired to the safety-monitoring module. The diagnostic output can be connected to a PLC for instance.

Series-wiring of the RSS 36 with serial diagnostic function

n devices max.
31 components
in series

Y1 and Y2 $=$ Safety outputs \rightarrow Safety controller
SD-IN \rightarrow Gateway \rightarrow Field bus
The voltage is supplied to both safety inputs of the last safety sensor of the chain (considered from the safety-monitoring module). The safety outputs of the first safety sensor are wired to the safety-monitoring module. The SD-Gateway is connected to the serial diagnostic input of the first safety sensor.

Diagnostic of the RSS 36 safety sensor with conventional diagnostic output

The safety sensor indicates the operating condition and faults by means of three-colour LED‘s located in the lateral surfaces of the sensor. The green LED indicates that the safety sensor is ready for operation. The supply voltage is on

If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flash code can be used to prematurely detect changes in the distance between the sensor and the actuator (e.g. sagging of a guard door). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

LED (red)	Flash codes	Cause
1 flash pulse	\square	E rror output Y 1
2 flash pulses	\square	E rror output Y2
3 flash pulses	$\square \square$	Cross-wire Y 1/Y2
4 flash pulses	$\square \square$	Ambient temperature too high
5 flash pulses	$\square \square \square \square$	Incorrect or defective actuator
Continuous red	$ـ$	Internal device error

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. The electronic diagnostic output signals faults before the safety outputs are disabled, thus enabling a controlled shutdown.

The diagnostic output is not a safety-related output!

The diagnostic output can also be used to detect clearance variations between the sensor and the actuator in the same way as the yellow LED. An active fault causes the diagnostic output to be disabled. The safety outputs are disabled after max. 30 minutes if the fault is not rectified. This signal combination, diagnostic output disabled and safety channels still enabled, can be used to stop the production process in a controlled manner.

Example of the diagnostic function of the safety sensor with conventional diagnostic output

Sensor function	LED`s Green	Red	Yellow	Diagnostic output	Safety outputs Y1, Y2	Note
Supply voltage	on	off	off	0 V	0 V	Voltage on, no evaluation of the voltage quality
Actuated	off	off	on	24 V	24 V	The yellow LED always signals the presence of an actuator within range
Actuated in limit area	off	off	flashes (1Hz)	$\begin{gathered} 24 \mathrm{~V} \\ \text { pulsed } \end{gathered}$	24 V	The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine
Error warning, sensor actuated	off	flashes	off	0 V	24 V	After 30 minutes \rightarrow error
Error	off	flashes	off	0 V	0 V	Refer to table with flash codes

Diagnostic of the RSS 36 safety sensor with serial diagnostic function

Sensors with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output.
If RSS/CSS sensors are daisy-chained, the safety outputs as well as the inputs and outputs of the diagnostic channels are wired in series.

The operational information of the responseand diagnostic data is automatically andpermanently written in an input byte of the PLC for each safety sensor in the series-wiredchain. The request data for each safety sensorare transmitted to the component through anoutput byte of the PLC.
In the event of a communication error between the SD-Gateway and the safety sensor, the switching condition of the safety output of the safety sensor is maintained.

Failure

A failure has occurred, which resulted in theimmediate deactivation of the safety outputs. The failure is reset when the failure cause iseliminated and bit 7 of the request bytechanges from 1 to 0 or when the safetyguard is opened. Failures at the safety outputs will only bedeleted upon the next release, as theneutralisation of the failure cannot bedetected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure waming is reset when the failure cause is eliminated.

I/O data and diagnostic data

Communication directions:
Request byte: from the PLC to the local electronic safety switchgear
Response byte: from the local electronic safety switchgear to the PLC
Warning/error byte: from the local electronic safety switchgear to the PLC

The described condition is obtained, when bit $=1$

Function of the visual diagnostic LED`s, the serial status signals and the safety outputs by means of an example
Flash code as in previous version

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}

\hline \multirow[t]{2}{*}{System condition} \& \multirow[t]{2}{*}{| LED`s |
| :--- |
| green |} \& \multirow[b]{2}{*}{red} \& \multirow[b]{2}{*}{yellow} \& \multirow[t]{2}{*}{Safety outputs Y1, Y2} \& \multicolumn{8}{|l|}{Status signals serial diagnostic byte Bit \mathbf{n}°}

\hline \& \& \& \& \& 7 \& 6 \& 5 \& 4 \& 3 \& 2 \& 1 \& 0

\hline Not actuated, inputs X1 and X2 enabled \& on \& off \& off \& 0 V \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

\hline Actuated, safety outputs enabled \& off \& off \& on \& 24 V \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated in limit area \& off \& off \& flashes (1Hz) \& 24 V \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated, warning \& off \& on/flashes \& off \& 24 V \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated, fault \& off \& on/flashes \& off \& 0 V \& 1 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0

\hline
\end{tabular}

The shown bit sequence of the diagnostic byte is an example. A different combination of theoperating conditions will lead to a change of the bit sequence.

Electronic safety sensor CSS 16

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $2,5 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- Basic size identical to AZ 16 safety switch
- Rated switching distance 8 mm
- Misaligned actuation possible
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 16 sensors in PL e / category 4 to EN ISO 13849-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard
- Controlled shutdown of the machine under observation of the running processes in case of emergency

Sensor CSS 16

-Thermoplastic enclosure

- Electronic, non-contact, coded system
- Large switching distance
- Misaligned actuation possible
- High repeat accuracy of the switching points
- Self-monitored series-wiring of max. 16 sensors
- Max. length of the sensor chain 200 m
- Comfortable diagnose through sensor LED and diagnostic output
- Early warning when operating near the limit of the sensor's hysteresis range
- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)

Approvals

(50) (10w

C

Ordering detalls

CSS 8-16-(1)-(2)-(3)
No. | Option | Description

(1)	2P	2 p-type safety outputs
	$2 P+D$	$2 p$-type safety outputs and 1 p-type signal contact (diagnostic)
(2)	E	End or single device
	Y	Device for series-wiring
	M	Multifunction device
(3)	L	Connecting cable
	LST	Connecting cable and connector

Sensor and actuator must be ordered separately!

Actuator CST 16-1

- Thermoplastic enclosure

Approvals

Certification in combination with safety sensor

Ordering detrils

Actuator
CST 16-1

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1, IEC 61508

Enclosure:
glass-fibre reinforced thermoplastic
Mode of operation:
Actuator: inductive

Switching distances to IEC 60947-5-3:

Rates switching distance S_{n} : 8 mm
Assured switch-on distance S_{ao} : 6 mm
Assured switch-off distance S_{ar} : 11 mm
Hysteresis:
max. 1.0 mm
Repeat accuracy R:
$<0.5 \mathrm{~mm}$
Switching frequency f:
Series-wiring:
Cable length:
max. 16 components max. 200 m
(Cable length and cable section alter the voltage drop depending on the output current) Connection:

Cable:
cable or
cable with connector M12
PVC / LIYY /
UL-Style Y-UL 2464 / 2 m
Cable section: $4 \times 0.5 \mathrm{~mm}^{2}, 5 \times 0.34 \mathrm{~mm}^{2}, 7 \times 0.25 \mathrm{~mm}^{2}$

Ambient conditions:

Ambient temperature T_{u}
for output current
$\leq 500 \mathrm{~mA}$ /output $\quad-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
$\leq 200 \mathrm{~mA}$ /output $\quad-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Storage and transport
temperature:

$$
-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}
$$

$$
-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}
$$

Resistance to vibration:

$$
10 \ldots 55 \mathrm{~Hz}
$$

Resistance to shock:
Protection class:
amplitude 1 mm $30 \mathrm{~g} / 11 \mathrm{~ms}$

Electrical data:

Rated operating
voltage U_{e} :
24 VDC - $15 \% /+10 \%$
(stabilised PELV)
Rated operating current I_{e}
1.1 A

Required ratedshort-circuit current: 100 A

Short-circuit protection:

External fuse:
1.0 A for output current $\leq 200 \mathrm{~mA}$
1.6 A for output current $>200 \mathrm{~mA}$

Rated insulation voltage U_{i} : 32 V Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$: 800 V
No-load current I_{0} :
0.05 A

Note

Legend

S Switching distance
V Misalignment
$\mathrm{S}_{\text {on }} \quad$ Switch-on distance
$\mathrm{S}_{\text {off }} \quad$ Switch-off distance $\left(\mathbf{S}_{\text {on }}<\mathbf{S}_{\mathrm{h}}<\mathbf{S}_{\text {off }}\right)$
$S_{h} \quad H y s t e r e s i s ~ a r e a ~$
$\mathrm{S}_{\mathrm{ao}} \quad$ Assured switch-on distance
$\mathrm{S}_{\mathrm{ar}} \quad$ Assured switch-off distance

Electronic safety sensor CSS 16

Technical data

Response time:	$\leq 30 \mathrm{~ms}$
Duration of risk:	$\leq 30 \mathrm{~ms}$

Protection class $\leq 30 \mathrm{~ms}$

Overvoltage category:
Degree of pollution:
EMC rating:
3

EMC interfering radiation:
to EN 61000-6-4
Safety inputs X1/X2:
Rated operating voltage U_{e} : $\quad 24$ VDC
$-15 \% /+10 \%$
PELV (to IEC 60204-1)
Rated operating current I_{e} :
1 A
Safety outputs Y1/Y2:
NO function, 2-channel
p-type, short-circuit proof
Voltage drop:
0.5 V

Rated operating voltage $U_{e 1}: \quad \min . U_{e}-0.5 \mathrm{~V}$
Leakage current I_{r} :
$\leq 0.5 \mathrm{~mA}$
Rated operating current $\mathrm{I}_{\mathrm{e} 1}$: max. 0.5 A ambient temperature-dependent
Minimum operating current I_{m} : $\quad 0.5 \mathrm{~mA}$
Utilisation category: DC-12 $\mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 24 \mathrm{VDC} / 0.5 \mathrm{~A}$ DC-13 Ue/I $24 \mathrm{VDC} / 0.5 \mathrm{~A}$
Diagnostic output: p-type, short-circuit proof
Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$: $\quad \min . \mathrm{U}_{\mathrm{e}}-4 \mathrm{~V}$
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category: DC-12 U $\mathrm{U}_{\mathrm{e}} \mathrm{I}_{\mathrm{e}} 24 \mathrm{VDC} / 0.05 \mathrm{~A}$
DC-13 $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 24 \mathrm{VDC} / 0.05 \mathrm{~A}$

Classification:

Standards
EN ISO 13849-1, IEC 61508
PL:
Category:
e

PFH value:
$25 \times 10^{-9} / \mathrm{h}$
SIL: suitable for SIL 3 applications
Mission time:

20 years

Connection

Series-wiring device: CSS-8-16-2P-Y-LST

Inputs (IN)
Connecting cable (0.25 m)
with connector:

Connector female M12, 4-pole

Wiring grey cable (IN)	black cable (OUT)	Pin configuration
A1 $\mathrm{U}_{\text {e }}$	A1 $\mathrm{U}_{\text {e }}$	Pin 1
A2 GND	A2 GND	Pin 3
X1 Safety input 1	Y1 Safety output 1	Pin 4
X2 Safety input 2	Y2 Safety output 2	Pin 2

Multifunction device: CSS-8-16-2P+D-M-L..
Connecting cable (2 m)
Cable section

Cable section
7 -pole: $7 \times 0.25 \mathrm{~mm}^{2}$

Connecting cable (2 m)
with connector:
Connector male M12, 8-pole

Colour of the connecting cable	Wiring	Pin configuration
BN (brown)	A1 U $_{e}$	Pin 1
BU (blue)	A2 GND	Pin 3
VT (violet)	X1 Safety input 1	Pin 6
WH (white)	X2 Safety input 2	Pin 2
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Pin 7
GY (grey)	Diagnostic output	Pin 5
-	Spare	Pin 8

Note

- Series-wiring of sensors:

A chain of 16 self-monitored CSS 16 safety sensors can be wired in series without loss of PLe or category 4 to EN ISO 13849-1. In this configuration, the redundant output of the first sensor is wired to the input of the next sensor.

- The voltage drop over a long sensor chain should be taken into account when planning cable routing. It depends on several factors, which are operating voltage, cable length and section, ambient temperature, number of series-wired sensors and the input load of the safety controller.

Wiring and connectors
refer to page 111

Electronic safety sensor CSS 16
Series-wiring of the CSS 16 with common cable for safety inputs and outputs

BK and $\mathrm{RD}=$ Safety outputs Y 1 and $\mathrm{Y} 2 \rightarrow$ Safety controller

If the last safety sensor of the series-wiring is not an end or single device, the positive operating voltage must be supplied to both safety inputs. A series-wiring of multiple safety sensors is realised by wiring in the control cabinet either in junction boxes on site.

Series-wiring of the CSS 16 with common cable for safety inputs and outputs

$B K$ and RD $=$ Safety outputs Y 1 and $\mathrm{Y} 2 \rightarrow$ Safety controller

The safety inputs of the last sensor ("M" type) starting from the safety controller are also used for the series-wiring The voltage for the safety channels is supplied here.

Electronic safety sensor CSS 16

Diagnostic function of the CSS 16

The operating condition of the sensor as wellas possible faults are signalled by means of three－color LED＇s in the end cap of the sensor． The green LED indicates that the safety sensor is ready for operation．The sensor is not actuated．

When the safety sensor is actuated by the actuator，the indication LED switches from green to yellow．The safety outputs of the safety sensor are enabled．If the actuator is near the limit of the sensor＇s switching distance，the yellow LED will flash．The safety outputs remain enabled．The sensor can be readjusted before the safety outputs are disabled，thus stopping the machine．

Errors in the coding of the actuator，at the outputs of the sensor or in the sensor are signalled by the red LED．After a short analysis of the active fault，signalled by the red permanent signal，the defined error is indicated by flash pulses．The safety outputs are disabled in a delayed manner， when the fault is active for 1 minute．

LED（red）	Flash codes	Cause
1 flash pulse	\square	E rror output Y 1
2 flash pulses	$\square \square$	E rror output Y 2
3 flash pulses	$\square \square$	Cross－wire，error safety outputs 1 and 2
4 flash pulses	$\square \square \square$	Ambient temperature too high
5 flash pulses	ワワワワ	Actuator error，coding error

The short－circuit proof diagnostic output OUT can be used for central indicating or control functions，for instance in a PLC．The electronic diagnostic output signals faults before the safety outputs are disabled，thus enabling a controlled shutdown．

The diagnostic output is not a safety－related output！

The closed condition of the safety guard，i．e．the sensor is actuated，is indicated through a positive signal．If the sensor is operating near the limit of its switching distance，e．g．due to the sagging of the safety guard，the sensor will emit a 2 Hz cyclic signal before the safety outputs are disabled．An active fault will disable the diagnostic output after a short analysis．

Examples of the diagnostic function of the safety sensor

Sensor condition	LED＇s	Diagnostic output	Safety output	Note
Not actuated	Green	OV	0 V	Supply voltage on，no evaluation of the voltage quality
Actuated	Yellow	24 V	24 V	The yellow LED always signals the presence of an actuator within range
Actuated in limit range	Flashes yellow	24 V 2 Hz pulsed	24 V	The sensor must be readjusted before the actuator gets outside of the maximum switching range and the safety outputs are disabled，thus stopping the machine．
Failure warning， sensor actuated	Flashes red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	1 min delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	After 1 minute－＞failure
Failure	Red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	not delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	－

Electronic safety sensor CSS 180

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $2,5 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- Suitable for flush mounting
- Rated switching distance 8 mm
- Misaligned actuation possible
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 16 sensors in PL e / category 4 to EN ISO 13849-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard
- Controlled shutdown of the machine under observation of the running processes in case of emergency

CSS 180

- Connecting cable or

 connecting cable and connector- Thermoplastic enclosure
- Electronic, non-contact, coded system
- Large switching distance
- Misaligned actuation possible
- High repeat accuracy of the switching points
- Self-monitored series-wiring
of max. 16 sensors
- Max. length of the sensor chain 200 m
- Comfortable diagnose through sensor

LED and diagnostic output

- Early warning when operating near the limit of the sensor's hysteresis range
- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)
- EX version available

Approvals

(e6t) (11) ${ }^{\text {es }}$		
Ordering detrils		
CSS	8-180-11	
No.	Option	Description
(1)	$\begin{aligned} & 2 P \\ & 2 P+D \end{aligned}$	2 p-type safety outputs 2 p-type safety outputs and 1 p -type signal contact (diagnostic)
(2)	$\begin{aligned} & E \\ & Y \\ & M \end{aligned}$	End or single device Device for series-wiring Multifunction device
(3)	$\begin{aligned} & \mathrm{L} \\ & \mathrm{LST} \\ & \mathrm{ST} \end{aligned}$	Connecting cable Connecting cable and connector Integrated connector

Sensor and actuator must be ordered separately!

CSS 180 ST

- Integrated connector
- Multifunction device
- Available: CSS 8-180-2P+D-M-ST

Technical data

Protection class:
Overvoltage category:
Degree of pollution:
Safety inputs X1/X2:
Rated operating voltage U_{e} :
24 VDC
$-15 \% /+10 \%$
PELV gem. IEC 60204-1
Rated operating current I_{e}
Safety outputs Y1/Y2:
short-circuit proo
Rated operating current $\mathrm{I}_{\mathrm{e} 1}$: max. 0.5 A , ambient temperature-dependent
Utilisation category: $\quad \mathrm{DC}-12 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 24 \mathrm{VDC} / 0.5 \mathrm{~A}$ DC-13 Ue/I $24 \mathrm{VDC} / 0.5 \mathrm{~A}$
Voltage drop:
Diagnostic output:

Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$
short-circuit proof
$\min . U_{e}-4 \mathrm{~V}$
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$: $\max .0 .05 \mathrm{~A}$
Utilisation category: $D C-12 \mathrm{U}_{\mathrm{e}} / I_{\mathrm{e}} 24 \mathrm{VDC} / 0.05 \mathrm{~A}$ DC-13 Ue/le $24 \mathrm{VDC} / 0.05 \mathrm{~A}$
External short-circuit protection:
fuse

- for output current $\leq 200 \mathrm{~mA}$
1.0 A
- for output current > 200 mA

Classification:

Standards:
EN ISO 13849-1, IEC 61508
PL:
Category:
PFH value:
SIL:
Mission time:

$$
\begin{array}{r}
\mathrm{e} \\
4 \\
2,5 \times 10^{-9} / \mathrm{h} \\
\text { suitable for SIL } 3 \text { applications } \\
20 \text { years }
\end{array}
$$

Connection

End or single device: CSS- $8-16-2 P+\ldots-E-L$.

Connecting cable (2 m):
Cable section
4-pole: $4 \times 0.5 \mathrm{~mm}^{2}$
5 -pole: $5 \times 0.35 \mathrm{~mm}^{2}$

Connecting cable (2 m) with connector male:
M12, 4-pole
M12, 5-pole

Colour of the connecting cable	Wiring	Pin configuration
BN (brown)	A1 U e_{e}	Pin 1
BU (blue)	A2 GND	Pin 3
BK (black)	Y1 Safety output 1	Pin 4
WH (white)	Y2 Safety output 2	Pin 2
GY (grey)	Only 5-pole version: diagnostic output (option)	Pin 5

Series-wiring device: CSS-8-16-2P-Y-L.
Inputs (IN):
(0.25 m) grey cable
4 -pole, $4 \times 0.5 \mathrm{~mm}^{2}$
Outputs (OUT): (2 m)
black cable
4 -pole, $4 \times 0.5 \mathrm{~mm}^{2}$

| Colour of the
 connecting cable | Wiring
 grey cable (IN) | black cable (OUT) |
| :--- | :--- | :--- | :--- |\quad| Pin |
| :--- |
| configuration |,

Multifunction device: CSS-8-16-2P+D-M-

Connecting cable (2 m)
Cable section 7-pole:
$7 \times 0.25 \mathrm{~mm}^{2}$

Wiring

BN (brown)	A1 $_{e}$	Pin 1
BU (blue)	A2 GND	Pin 3
VT (violet)	X1 Safety input 1	Pin 6
WH (white)	X2 Safety input 2	Pin 2
BK (black)	Y1 Safety output 1	Pin 4
RD (red)	Y2 Safety output 2	Pin 7
GY (grey)	Diagnostic output	Pin 5
-	Spare	Pin 8

Note

- Series-wiring of sensors:

A chain of 16 self-monitored CSS 180 safety sensors can be wired in series without loss of PL e and category 4 to EN ISO 13849-1. In this configuration, the redundant output of the first sensor is wired into the input of the next sensor.

- The voltage drop over a long sensor chain should be taken into account when planning cable routing. It depends on several factors, which are operating voltage, cable length and section, ambient temperature, number of series-wired sensors and the input load of the safety controller.

Electronic safety sensor CSS 180
System components

Actuator CST 180-1

Actuator CST 180-2

Terminal mounting H 18

Ordering details

Sensor and actuator must be ordered separately!

Series-wiring of the CSS 180 with common cable for safety inputs and outputs

BK and RD = Safety outputs Y1 and Y2 \rightarrow Safety controller
CSS 8-180-2P-E-L as single or end device of the chain. In this sensor type, the supply voltage is internally supplied to the safety inputs. A series-wiring of multiple safety sensors is realised by wiring in the control cabinet either in junction boxes on site. A CSS 8-180-2P+D-M-L safety sensor can also be used as end device of the chain. In this case, the positive operating voltage must be connected to both safety inputs of this safety sensor. The positive operating voltage for the last safety sensor in a series-wiring must be supplied to both safety inputs. A series-wiring of multiple safety sensors is realised by wiring in the control cabinet either in junction boxes on site.

Series-wiring of the CSS 180 in plants of comprehensive dimension

WH and BK = Safety outputs Y 1 and $\mathrm{Y} 2 \rightarrow$ Safety controller

CSS 8-180-2P-E-L as single or end device of the chain. In this sensor type, the supply voltage is internally supplied to the safety inputs. The CSS 8-180-2P-Y-L A safety sensors have separated input and output cables. The outputs of the first sensor are wired to the inputs of the next sensor and so on. In this way, a 200 meters long sensor chain can be set up.
A safety sensor of the type CSS 8-180-2P-Y-L can also be used as end device of a chain, in which case additional wiring however is required. The positive operating voltage must be connected to both safety inputs.

Electronic safety sensor CSS 180

Diagnostic function of the CSS 180

The operating condition of the sensor as wellas possible faults are signalled by means of three－color LED＇s in the end cap of the sensor． The green LED indicates that the safety sensor is ready for operation．The sensor is not actuated．

When the safety sensor is actuated by the actuator，the indication LED switches from green to yellow．The safety outputs of the safety sensor are enabled．If the actuator is near the limit of the sensor＇s switching distance，the yellow LED will flash．The safety outputs remain enabled．The sensor can be readjusted before the safety outputs are disabled，thus stopping the machine．

Errors in the coding of the actuator，at the outputs of the sensor or in the sensor are signalled by the red LED．After a short analysis of the active fault，signalled by the red permanent signal，the defined error is indicated by flash pulses．The safety outputs are disabled in a delayed manner， when the fault is active for 1 minute．

LED（red）	Flash codes	Cause
1 flash pulse	\square	E rror output Y 1
2 flash pulses	$\square \square$	E rror output Y 2
3 flash pulses	$\square \square$	Cross－wire，error safety outputs 1 and 2
4 flash pulses	$\square \square \square$	Ambient temperature too high
5 flash pulses	ワワワワ	Actuator error，coding error

The short－circuit proof diagnostic output OUT can be used for central indicating or control functions，for instance in a PLC．The electronic diagnostic output signals faults before the safety outputs are disabled，thus enabling a controlled shutdown．

The diagnostic output is not a safety－related output！

The closed condition of the safety guard，i．e．the sensor is actuated，is indicated through a positive signal．If the sensor is operating near the limit of its switching distance，e．g．due to the sagging of the safety guard，the sensor will emit a 2 Hz cyclic signal before the safety outputs are disabled．An active fault will disable the diagnostic output after a short analysis．

Examples of the diagnostic function of the safety sensor

Sensor condition	LED＇s	Diagnostic output	Safety output	Note
Not actuated	Green	OV	0 V	Supply voltage on，no evaluation of the voltage quality
Actuated	Yellow	24 V	24 V	The yellow LED always signals the presence of an actuator within range
Actuated in limit range	Flashes yellow	24 V 2 Hz pulsed	24 V	The sensor must be readjusted before the actuator gets outside of the maximum switching range and the safety outputs are disabled，thus stopping the machine．
Failure warning， sensor actuated	Flashes red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	1 min delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	After 1 minute－＞failure
Failure	Red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	not delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	－

Electronic safety sensor CSS 30

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $2,5 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- Suitable for flush mounting
- Rated switching distance 15 mm
- Misaligned actuation possible
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 16 sensors in PL e / category 4 to EN ISO 13849-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard
- Controlled shutdown of the machine under observation of the running processes in case of emergency

Sensor CSS 30

- Metal enclosure M30
- 2 short-circuit proof, p-type safety outputs (24 VDC per 500 mA)
- Self-monitored series-wiring of max. 16 sensors for PLe and category 4 to EN ISO 13849-1
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety outputs

Actuator CST 30-1

- Thermoplastic enclosure

Approvals

Ordering details

CSS 15-30-2P+D-M-L

Sensor and actuator must be ordered separately!

Approvals

Certification in combination with safety sensor under preparation

Ordering details

Actuator

Note

Requirements for the safety controller
The safety monitoring module must tolerate internal functional tests of the safety outputs for $250 \mu \mathrm{~s} . . .1500 \mu \mathrm{~s}$.

The $250 \mu \mathrm{~s}$ switch-off time of the safety sensor additionally will be extended depending on the cable length and the capacity of the cable used. Typically, a switch-off time of $500 \mu \mathrm{~s}$ is reached with a 100 m connecting cable. The safety monitoring module does not need to have a cross-wire short monitoring function.

Technical data

$U_{i}:$
$U_{i m p}$:
No-load current I_{0} :
Response time:
Duration of risk:
Protection class:
Overvoltage category:
Degree of pollution:
Safety inputs X1/X2:
Rated operating voltage U_{e} :
24 VDC
$-15 \% /+10 \%$ (PELV gem. IEC 60204-1)
Rated operating current I_{e} :
1 A
Safety outputs Y1/Y2:
NO function, 2-channel, p-type, short-circuit proof
Voltage drop: 0.5 V

Rated operating voltage $U_{\text {e1 }}$: min. $U_{e}-0.5 \mathrm{~V}$
Leakage current $t_{r} \quad \leq 0.5 \mathrm{~mA}$
Rated operating current I_{e} : max. 0.5 A ambient temperature-dependent
Minimum operating current I_{m} : 0.5 mA

Utilisation category: $\quad D C-12 \mathrm{U}_{\mathrm{e}} / \mathrm{I}_{\mathrm{e}} 24 \mathrm{VDC} / 0.5 \mathrm{~A}$ DC-13 Uelle $24 \mathrm{VDC} / 0.5 \mathrm{~A}$
Diagnostic output:
p-type, short-circuit proof
$U_{\text {e2 }}$: min. $\mathrm{U}_{\mathrm{e}}-4 \mathrm{~V}$

Rated operating current $\mathrm{l}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category: DC-12 $\mathrm{U}_{\mathrm{e}} / \mathrm{l}_{\mathrm{e}} 24 \mathrm{VDC} / 0.05 \mathrm{~A}$ DC-13 U $/ I_{\mathrm{e}} 24 \mathrm{VDC} / 0.05 \mathrm{~A}$

Classification:

Standards:
PL:
Category:
EN ISO 13849-1, IEC 61508

PFH value:
$2.5 \times 10^{-9} / \mathrm{h}$
SIL: \quad suitable for SIL 3 applications
Mission time:
20 years

Misalignment

The actuating curves represent the switch-on and switch-off distances of the CSS 30 safety sensor by the approach of the CST 30-1 actuator.

In case of concealed mounting, the switching distance varies.

System components

Note

Wiring and connectors
refer to page 111

Note

Legend

S Switching distance
x Misalignment
$S_{n} \quad$ Switching distance
$\mathrm{S}_{\mathrm{ao}} \quad$ Assured switch-on distance
$S_{a r} \quad$ Assured switch-off distance

Ordering details

Actuator
Terminal mounting
Magnetic ball catch

Series-wiring of the CSS 30 mit gemeinsamer Leitung für Sicherheitsein- und ausgänge

BK and $\mathrm{RD}=$ Safety outputs Y 1 and $\mathrm{Y} 2 \rightarrow$ Safety controller

For the last safety sensor in a series-wiring, the positive operating voltage must be supplied to both safety inputs. A series-wiring of multiple safety sensors is realised by wiring in the control cabinet either in junction boxes on site.

Electronic safety sensor CSS 30

Diagnostic function of the CSS 30

The operating condition of the sensor as wellas possible faults are signalled by means of three－color LED＇s in the end cap of the sensor． The green LED indicates that the safety sensor is ready for operation．The sensor is not actuated．

When the safety sensor is actuated by the actuator，the indication LED switches from green to yellow．The safety outputs of the safety sensor are enabled．If the actuator is near the limit of the sensor＇s switching distance，the yellow LED will flash．The safety outputs remain enabled．The sensor can be readjusted before the safety outputs are disabled，thus stopping the machine．

Errors in the coding of the actuator，at the outputs of the sensor or in the sensor are signalled by the red LED．After a short analysis of the active fault，signalled by the red permanent signal，the defined error is indicated by flash pulses．The safety outputs are disabled in a delayed manner， when the fault is active for 1 minute．

LED（red）	Flash codes	Cause
1 flash pulse	\square	E rror output Y 1
2 flash pulses	$\square \square$	E rror output Y 2
3 flash pulses	$\square \square$	Cross－wire，error safety outputs 1 and 2
4 flash pulses	$\square \square \square$	Ambient temperature too high
5 flash pulses	ワワワワ	Actuator error，coding error

The short－circuit proof diagnostic output OUT can be used for central indicating or control functions，for instance in a PLC．The electronic diagnostic output signals faults before the safety outputs are disabled，thus enabling a controlled shutdown．

The diagnostic output is not a safety－related output！

The closed condition of the safety guard，i．e．the sensor is actuated，is indicated through a positive signal．If the sensor is operating near the limit of its switching distance，e．g．due to the sagging of the safety guard，the sensor will emit a 2 Hz cyclic signal before the safety outputs are disabled．An active fault will disable the diagnostic output after a short analysis．

Examples of the diagnostic function of the safety sensor

Sensor condition	LED＇s	Diagnostic output	Safety output	Note
Not actuated	Green	OV	0 V	Supply voltage on，no evaluation of the voltage quality
Actuated	Yellow	24 V	24 V	The yellow LED always signals the presence of an actuator within range
Actuated in limit range	Flashes yellow	24 V 2 Hz pulsed	24 V	The sensor must be readjusted before the actuator gets outside of the maximum switching range and the safety outputs are disabled，thus stopping the machine．
Failure warning， sensor actuated	Flashes red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	1 min delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	After 1 minute－＞failure
Failure	Red	10 s delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	not delayed $24 \mathrm{~V} \rightarrow 0 \mathrm{~V}$	－

Humanity first and foremost Safety Consulting

Electronic safety sensor CSS 30S

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $3,6 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- Robust enclosure in 1.4404 (V4A) to EN 10088
- Hygiene-compliant design with IP69K protection class
- Sensor can also be fitted under V4A covers
- Suitable for flush mounting
- Misaligned actuation possible

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard

Sensor CSS 305

- Stainless steel enclosure M30
- suitable for concealed mounting behind

stainless steel

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety outputs
- With integrated connector

Actuator CST 305-1

-Stainless steel enclosure M30

Technical datra

Safety outputs Y1/Y2:
NO function, 2-channel,
p-type, short-circuit proof
Rated operating voltage $\mathrm{U}_{\text {e1 }}$: $\quad 24 \mathrm{VDC}$

Voltage drop:
Leakage current I_{r} :
Rated operating current l_{el} :
Minimum operating current I_{m} :
Utilisation category:
$\mathrm{U}_{\mathrm{e} 1} / /_{\mathrm{e} 1}$:
Required rated short-circuit current: $\quad 100 \mathrm{~A}$
Diagnostic output: p-type, short-circuit proof Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$: $\quad 24 \mathrm{VDC}$ $-15 \% /+10 \%$
Voltage drop:
$<5 \mathrm{~V}$
Rated operating current $\mathrm{l}_{\mathrm{e} 2}$:
Utilisation category:
$\mathrm{U}_{\mathrm{e} 2} / \mathrm{l}_{\mathrm{e} 2}$:
$-15 \% /+10 \%$
$<1 \mathrm{~V}$
$<0.5 \mathrm{~mA}$
max. 0.25 A
0.5 mA

DC-12, DC-13
max. 0.05 A
DC-12, DC-13 24 VDC / 0.05 A

Serial diagnostic:

Operating current: 150 mA short-circuit proof Wiring capacitance for
serial diagnostic:
max. 50 nF

Classification:

Standards:
EN ISO 13849-1, IEC 61508
PL:
Category:
PFH value:
SIL:
$3.6 \times 10^{-9} / \mathrm{h}$
Mission time:
suitable for SIL 3 applications 20 years

Misalignment

The actuating curves represent the switch-on and switch-off distances of the safety sensor by the approach of the CST 30S-1 actuator.

When the safety sensor is fitted under nonmagnetic stainless steel (V4A) or in case of concealed mounting, the switching distance varies.

Legend

S Switching distance
\checkmark Misalignment
$\mathrm{S}_{\text {on }} \quad$ Switch-on distance
$S_{\text {off }} \quad$ Switch-off distance $\left(\mathbf{S}_{\text {on }}<\mathbf{S}_{\mathbf{h}}<\mathbf{S}_{\text {off }}\right)$
$\mathrm{S}_{\mathrm{h}} \quad$ Hysteresis area
$\mathrm{S}_{\mathrm{ao}} \quad$ Assured switch-on distance
$\mathrm{S}_{\mathrm{ar}} \quad$ Assured switch-off distance

Note

Wiring and connectors
refer to page 111

Note

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUSGateway SD-I-DPV0-2 and the UniversalGateway SD-I-U-.... and in the instructions for the integration of the SD-Gateway.

System components

Terminal mounting H 30

Ordering details

Terminal mounting
Magnetic ball catch

Series-wiring of the CSS 30S with conventional diagnostic output

Y1 and Y2 = Safety outputs \rightarrow Safety controller

The safety inputs of the last sensor of the chain (considered from the safety-monitoring module) are connected to the voltage supply. The safety outputs of the first sensor are wired to the safety controller.

Series-wiring of the CSS 30S with serial diagnostic function

n devices max.
31 components in series

Diagnostic function of the CSS 30S with conventional diagnostic output

The safety sensor indicates the operating condition and faults by means of three-colour LED's located in the connection area.
The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. The yellow LED always signals the presence of an actuator within range.

If the actuator is near the limit of the sensor's switching distance, the LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. Signaled by the alternating red/green flashing of the Duo LED on the device.. If an error is detected, the red LED will be activated.

LED (red)	Flash codes	Cause
1 flash pulse	\ldots	Error output Y 1
2 flash pulses	$\square \square$	E rror output Y2
3 flash pulses	$\square \square$	Cross-wire Y $1 / Y 2$
4 flash pulses	$\square \square$	Ambient temperature too high
5 flash pulses	-ூワワூ	Incorrect or defective actuator
Continuous red	\square	Internal failure

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. The electronic diagnostic output signals faults before the safety outputs are disabled, thus enabling a controlled shutdown.

The diagnostic output is not a safety-related output!
The diagnostic output can also be used to detect clearance variations between the sensor and the actuator in the same way as the yellow LED. An active fault causes the diagnostic output to be disabled. The safety outputs are disabled after max. 30 minutes if the fault is not rectified. This signal combination, diagnostic output disabled and safety channels still enabled, can be used to stop the production process in a controlled manner.

Examples of the diagnostic function of the safety sensor with conventional diagnostic output

System condition	Duo-LED green		red	LED yellow	Diagnostic output	Safety outputs Y1, Y2	Note
Power on, not actuated	On	Off	Off	0 V	0 V	Power on, no evaluation of the voltage quality	
Actuated	On	Off	On	24 V	24 V	The yellow LED always signals the presence of an actuator in the detection area	
Actuated in limit area	On	Off	Flashes	24 V cyclic	24 V	The sensor must be readjusted before the actuator gets outside the maximum switching range and the safety outputs are disabled, thus stopping the machine	
Actuated, failure warning	Off	Flashes	On	0 V	24 V	After 30 minutes: error condition activated, safety outputs disabled	
Actuated, failure	Off	Flashes	On	0 V	0 V	refer to table „Flash codes"	
Actuated, internal failure	Off	On	On	0 V	0 V	-	

Diagnostic of the CSS 30S safety sensor with serial diagnostic function

Sensors with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output.
If CSS sensors are wired in series, the safety channels as well as the inputs and outputs of the diagnostic lines are wired in series.
Max. 31 safety sensors can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The response data, like status signals, warmings or failure messages, are automatically and permanently written in the assigned input byte of the PLC for each safety sensor in the series-wired chain. The request data for each safety sensor are transmitted to the device through an output byte of the PLC.

Bit 0:	Safety outputs enabled
Bit 1:	Safety sensor actuated, actuator identified
Bit 4:	Safety inputs energised
Bit 5:	Sensor actuated in hysteresis area
Bit 6:	Failure warning, switch-off delay activated
Bit 7:	Failure, safety outputs disabled

Functional example of the status signals, warnings or failure messages

Communication directions:		Request byte: from the PLC to the local CSS		
		Response byte: from the local CSS to the PLC		
		Warning/failure byte: from the local CSS to the PLC		
Bit ${ }^{\circ}$	Request byte	Response byte	Diagnostic Failure warning	Diagnostic Failure
Bit 0:	---	Safety output enabled	Error outputY1	Error output Y1
Bit 1:	---	Actuator detected	Error outputY2	Error output Y2
Bit 2:	---	---	Cross-wire	Cross-wire
Bit 3:	---	---	Ambient temperature too high	Ambient temperature too high
Bit 4:	---	Input condition X1 and X2	---	Actuator error,coding error
Bit 5:	---	Actuated in limit area	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gateway and safety sensor	---
Bit 7:	Failure reset	Failure (enabling path switched off)	---	---

The described condition is obtained, when bit $=1$

Function of the diagnostic LED's, the serial status signals and the safety outputs
Flash code as in previous version

System condition	Duo-LED		LED yellow	Safety outputsY1, Y2	Response byte n°							
	green	red			7	6	5	4	3	2	1	0
Supply voltage on, not actuated	On	Off	Off	0 V	0	0	0	0	0	0	0	0
Actuated, safety outputs released	On	Off	On	24 V	0	0	0	1	0	0	1	1
Actuated in limit area	On	Off	Flashes	24 V	0	0	1	1	0	0	1	1
Actuated, failure waming	Off	Flashes	On	24 V	0	1	0	1	0	0	1	1
Actuated, failure	Off	Flashes	On	0 V	1	0	0	1	0	0	1	0

The shown bit sequence of the diagnostic byte is an example. A different combination of theoperating conditions will lead to a change of the bit sequence.

Electronic safety sensor CSS 300

Classification:

- PL e / category 4
to EN ISO 13849-1 - Up to SIL 3 to IEC 61508 - PFH value: $3,6 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- Suitable for concealed mounting behind stainless steel
- Suitable for flush mounting
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard

Sensor CSS 300

- Thermoplastic enclosure
- Ø M30
- suitable for concealed mounting behind stainless steel
- 2 short-circuit proof, p-type safety outputs
(24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors
- Comfortable diagnose through sensor

LED and diagnostic output

- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety outputs
- With integrated connector

Betätiger CST 30S-1

- Stainless steel enclosure
- Ø M30

Approvals

THV
 (⑴.

Ordering detrils

CSS 11-300-(1)-M-ST
No. |Option | Description

(1) \begin{tabular}{l|l|l}

D \& | with diagnostic output |
| :--- |
| with serial diagnostic |
| function |

\end{tabular}

Sensor and actuator must be ordered separately!

Approvals

(\in
TUV
Certification in combination with safety sensor

Ordering detrils

Actuator CST 30S-1

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1,	
	IEC 61508
Enclosure:	thermoplastic
Mode of operation:	inductive

Switching distances to IEC 60947-5-3:

R ates switching distance S_{n} : 11 mm
Assured switch-on point S_{ao} : 8 mm
Assured switch-off point $S_{a r}$: 15 mm
Hysteresis: $<2 \mathrm{~mm}$
Repeat accuracy: $<1 \mathrm{~mm}$
Switching frequency f: $\quad 3 \mathrm{~Hz}$
Integrated connector: M12, 8-pole

Series-wiring: max. 31 components
Fuse: external, 2 A
Cable length:
max. 200 m

Ambient conditions:

Ambient temperature $\mathrm{T}_{\mathrm{u}}:$	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport	
temperature:	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Resistance to vibration:	$10 \ldots 55 \mathrm{~Hz}$,
	amplitude 1 mm Resistance to shock: Protection class:
IP65, IP67 to EN 60529	

Electrical data:

Rated operating
voltage U_{e} :
24 VDC -15\% / +10\%
(stabilised PELV)
Rated operating current I_{e} : $\quad 0.6 \mathrm{~A}$
No-load current I_{0} : max. 0.1 A; average 50 mA
Protection class:
Overvoltage category: III
Degree of pollution: 3
Rated impulse withstand
voltage $\mathrm{U}_{\text {imp }}$: $\quad 0.8 \mathrm{kV}$
Rated insulation voltage U_{i} : $\quad 32 \mathrm{~V}$
Response time: $<60 \mathrm{~ms}$
Duration of risk: $<60 \mathrm{~ms}$
Safety inputs X1/X2:
Rated operating voltage U_{e} : 24 VDC
$-15 \% /+10 \%$
PELV gem. IEC 60204-1
Rated operating current I_{e} :

1 A

Note

Requirements for the safety controller
The safety monitoring module must tolerate internal functional tests of the safety outputs for $250 \mu \mathrm{~s}-1500 \mu \mathrm{~s}$.

The 250μ s switch-off time of the safety sensor additionally will be extended depending on the cable length and the capacity of the cable used. Typically, a switch-off time of $500 \mu \mathrm{~s}$ is reached with a 100 m connecting cable. The safety monitoring module does not need to have a cross-wire short monitoring function

Technical data

Safety outputs Y1/Y2:
NO function, 2-channel,
p-type, short-circuit proof
Rated operating voltage $\mathrm{U}_{\mathrm{e} 1}$: 24 VDC
Voltage drop:
Leakage current I_{r} :
Rated operating current $\mathrm{I}_{\mathrm{e} 1}$:
Minimum operating current I_{m} :
Utilisation category:
Required rated short-circuit current: 100 A
Diagnostic output: p-type, short-circuit proof
Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$: $\quad 24 \mathrm{VDC}$ $-15 \% /+10 \%$
Voltage drop: $<5 \mathrm{~V}$
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category:
$\mathrm{U}_{\mathrm{e} 2} / \mathrm{l}_{\mathrm{e} 2}$:
DC-12, DC-13
24 VDC / 0.05 A

Serial diagnostic:

Operating current: 150 mA short-circuit proof Wiring capacitance for
serial diagnostic: max. 50 nF

Classification:

Standards:
PL:
Category:
EN ISO 13849-1, IEC 61508

PFH value:
SIL:
Mission time:
$3,6 \times 10^{-9} / \mathrm{h}$ suitable for SIL 3 applications 20 years

Misalignment

The actuating curves represent the switch-on and switch-off distances of the safety sensor by the approach of the CST 30S-1 actuator.

If the safety sensor is mounted behind non-ferromagnetic stainless steel (V4A) either flush-mounted, the switching distance is reduced.

Legend

S Switching distance
V Misalignment
$\mathrm{S}_{\text {on }} \quad$ Switch-on distance
$\mathrm{S}_{\text {off }}$ Switch-off distance
$\mathrm{S}_{\mathrm{h}} \quad$ Hysteresis area $\mathbf{s}_{\mathrm{h}}=\mathbf{s}_{\text {on }}-\mathbf{s}_{\text {off }}$
$\mathrm{S}_{\mathrm{ao}} \quad$ Assured switch-on distance
S_{ar} Assured switch-off distance

Note

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUSGateway SD-I-DPV0-2 and the UniversalGateway SD-I-U-.... and in the instructions for the integration of the SD-Gateway.

A detailed product description can be found in the ,Electronic Safety Sensors and Solenoid Interlocks" brochure.

System components

Terminal mounting H 30

Note

Wiring and connectors
refer to page 111

Series-wiring of the CSS 300 with conventional diagnostic output

Y1 and Y2 = Safety outputs \rightarrow Safety controller

The safety inputs of the last sensor of the chain (considered from the safety-monitoring module) are connected to the voltage supply. The safety outputs of the first sensor are wired to the safety controller.

Series-wiring of the CSS 300 with serial diagnostic function

n devices max.
31 components in series

[^0]SD-IN \rightarrow Gateway \rightarrow Field bus
The safety outputs of the first sensor (considered from the safety-monitoring module) are connected to the safety-monitoring module. The field bus Gateway is connected to the serial diagnostic input of the first sensor.

Diagnostic function of the CSS 300 with conventional diagnostic output

The safety sensor indicates the operating condition and faults by means of three-colour LED's located in the connection area.
The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. The yellow LED always signals the presence of an actuator within range.

If the actuator is near the limit of the sensor's switching distance, the LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. Signaled by the alternating red/green flashing of the Duo LED on the device.. If an error is detected, the red LED will be activated.

LED (red)	Flash codes	Cause
1 flash pulse	\ldots	Error output Y 1
2 flash pulses	$\square \square$	E rror output Y2
3 flash pulses	$\square \square \square$	Cross-wire Y $1 / Y 2$
4 flash pulses		Ambient temperature too high
5 flash pulses		Incorrect or defective actuator
Continuous red	\longrightarrow	Internal failure

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. The electronic diagnostic output signals faults before the safety outputs are disabled, thus enabling a controlled shutdown.

The diagnostic output is not a safety-related output!
The diagnostic output can also be used to detect clearance variations between the sensor and the actuator in the same way as the yellow LED. An active fault causes the diagnostic output to be disabled. The safety outputs are disabled after max. 30 minutes if the fault is not rectified. This signal combination, diagnostic output disabled and safety channels still enabled, can be used to stop the production process in a controlled manner

Examples of the diagnostic function of the safety sensor with conventional diagnostic output

System condition	Duo-LED		LED yellow	Diagnostic output	Safety outputsY1, Y2	Note
	green	red				
Power on, not actuated	On	Off	Off	0 V	0 V	Power on, no evaluation of the voltage quality
Actuated	On	Off	On	24 V	24 V	The yellow LED always signals the presence of an actuator in the detection area
Actuated in limit area	On	Off	Flashes	$24 \mathrm{~V}$ cyclic	24 V	The sensor must be readjusted before the actuator gets outside the maximum switching range and the safety outputs are disabled, thus stopping the machine
Actuated, failure warning	Off	Flashes	On	0 V	24 V	After 30 minutes: error condition activated, safety outputs disabled
Actuated, failure	Off	Flashes	On	0 V	0 V	refer to table „Flash codes"
Actuated, internal failure	Off	On	On	0 V	0 V	-

Diagnostic function of the CSS 300 with serial diagnostic function

Sensors with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output.
If CSS sensors are wired in series, the safety channels as well as the inputs and outputs of the diagnostic lines are wired in series.
Max. 31 safety sensors can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The response data, like status signals, warmings or failure messages, are automatically and permanently written in the assigned input byte of the PLC for each safety sensor in the series-wired chain. The request data for each safety sensor are transmitted to the device through an output byte of the PLC.

Bit 0:	Safety outputs enabled
Bit 1:	Safety sensor actuated, actuator identified
Bit 4:	Safety inputs energised
Bit 5:	Sensor actuated in hysteresis area
Bit 6:	Failure warning, switch-off delay activated
Bit 7:	Failure, safety outputs disabled

Functional example of the status signals, warnings or failure messages

Communication directions:		Request byte: from the PLC to the local CSS		
		Response byte: from the local CSS to the PLC		
		Warning/failure byte: from the local CSS to the PLC		
Bit n°	Request byte	Response byte	Diagnostic Failure warning	Diagnostic Failure
Bit 0:	---	Safety output enabled	Error output Y1	Error output Y1
Bit 1:	---	Actuator detected	Error outputY2	Error outputY2
Bit 2:	---	---	Cross-wire	Cross-wire
Bit 3:	---	---	Ambient temperature too high	Ambient temperature too high
Bit 4:	---	Input condition X1 and X2	---	Actuator error,coding error
Bit 5:	---	Actuated in limit area	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gateway and safety sensor	---
Bit 7:	Failure reset	Failure (enabling path switched off)	---	---

The described condition is obtained, when bit $=1$

Function of the diagnostic LED's, the serial status signals and the safety outputs
Flash code as in previous version

System condition	Duo-LED		LED yellow	Safety outputsY1, Y2	Response byte n°							
	green	red			7	6	5	4	3	2	1	0
Supply voltage on, not actuated	On	Off	Off	0 V	0	0	0	0	0	0	0	0
Actuated, safety outputs released	On	Off	On	24 V	0	0	0	1	0	0	1	1
Actuated in limit area	On	Off	Flashes	24 V	0	0	1	1	0	0	1	1
Actuated, failure waming	Off	Flashes	On	24 V	0	1	0	1	0	0	1	1
Actuated, failure	Off	Flashes	On	0 V	1	0	0	1	0	0	1	0

The shown bit sequence of the diagnostic byte is an example. A different combination of theoperating conditions will lead to a change of the bit sequence.

Electronic safety sensors CSS 34 and CSP 34

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $1,3 \times 10^{-10} / \mathrm{h}$

Actuation advantages

- Non-contact principle, no mechanical wear
- 4 actuating directions
- Side faces can be rotated in 3 positions
- Many actuator designs
- Sensor functioning with max. 53 mm misalignment with regard to the actuator
- High repeat accuracy of the switching points

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard

Sensor CSS 34

- Thermoplastic enclosure
- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet
- Sensor with connecting cable or with integrated connector

Sensor CSS 34F0/F1

Additional functions of the CSS 34F0/F1:

- To control positive-guided relays without downstream safety controller
- Suitable as individual or end device in series-wired chains of standard sensors to replace the safety controller
- Self-monitored series-wiring of up to 30 CSS 34 sensors and one CSS 34F. sensor
- CSS 34F. sensor with integrated connector
- CSS 34F0: without edge monitoring of the enabling button, suitable for automatic start
- CSS 34F1: with edge monitoring of the reset button

Technical data

Standards

Enclosure:
Mode of operation:

Actuator and switching distances

(IEC 60947-5-3):
refer to table
switching distances
max. 31 components
Cable length: max. 200 m
Hysteresis:
max. 1.5 mm
Repeat accuracy:
$<0.5 \mathrm{~mm}$
Switching frequency f:
Cable: Y-UL 2517 / $8 \times$ AWG 22 $8 \times 0.35 \mathrm{~mm}^{2}, 2 \mathrm{~m}$ long
Temperature resistance of the cable:

- At rest:
$-30^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$
- In movement:
$-10^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$
M12, 8-pole in the enclosure

Ambient conditions:

Ambient temperature T_{u} for output current
≤ 0.1 A/output
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
≤ 0.25 A/output
$-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Storage and transport
temperature:
Resistance to vibration:

Resistance to shock:
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
$10 \ldots 55 \mathrm{~Hz}$, amplitude 1 mm
$30 \mathrm{~g} / 11 \mathrm{~ms}$
Protection class: IP65, IP67 to EN 60529

Electrical data:

Rated operating voltage U_{e} : $\quad 24$ VDC
-15\% / +10\%
(stabilised PELV)
Rated operating current $I_{e}: \quad 0.6 \mathrm{~A}$
Required rated short-circuit current: 100 A
Fuse (circuit breaker):
for cables
Up to $45^{\circ} \mathrm{C}$:
4.0 A

Up to $60^{\circ} \mathrm{C}$: $\quad 3.15 \mathrm{~A}$
At $65^{\circ} \mathrm{C}$: 2.5 A
At $70^{\circ} \mathrm{C}$: $\quad 2.0 \mathrm{~A}$
For connectors: $\quad 2.0 \mathrm{~A}$
The cable section of the interconnecting cable must be observed for both wiring variants!

Approvals

Ordering details
CSS (1)-34-(2)-(3)-M-4)
No. | Option
Description

(1)	12	Head actuation
(2)	14	Sideways actuation
(3)	V	Lateral actuating surface
(4)	Frontal actuating surface	
SD	With diagnostic output With serial diagnostic function	
	ST	With connecting cable With integrated connector

Sensor and actuator must be ordered separately!
[85 (4l) C

Ordering detrails

CSS (1)-34(2)-3)-D-M-ST
No. Option | Description

(1)	12	Head actuation Sideways actuation Standard version
(2)	F0	Input for enabling button, suitable for automatic start Input for reset button,
(3)	S	with edge monitoring Lateral actuating surface Frontal actuating surface

Sensor and actuator must be ordered separately!

Note

Requirements for the safety controller

Dual-channel safety input, suitable for p-type sensors with normally-open (NO) function. The internal function tests of the sensors cause the outputs to cyclically switch off for max. 0.5 ms , this must be tolerated by the safety controller. The safety controller must not be equipped with cross-wire detection.

Electronic safety sensor CSS 34

Technical data

Rated operating current I_{e} : 1 A

Safety outputs Y1/Y2:

NO function, 2-channel,
p-type, short-circuit proof
Voltage drop:
$<1 \mathrm{~V}$
Rated operating voltage $U_{e 1}$: $\quad \min .\left(U_{e}-1 \mathrm{~V}\right)$
Leakage current I_{r} :
Rated operating current $\mathrm{I}_{\mathrm{e} 1}$:
$<0.5 \mathrm{~mA}$
max. 0.25 A ,
ambient temperature-dependent
Minimum operating current I_{m} :
Utilisation category:
$\mathrm{U}_{\mathrm{e} 1} / /_{\mathrm{e} 1}$:
Diagnostic output:
DC-12, DC-13
24 VDC / 0.25A p-type, short-circuit proof
Voltage drop:
$<5 \mathrm{~V}$
Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$:
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$:
Utilisation category:
$\mathrm{U}_{\mathrm{e} 2} / \mathrm{l}_{\mathrm{e} 2}$:
min. $\left(U_{e}-5 \mathrm{~V}\right)$
max. 0.05 A
DC-12, DC-13
24 VDC / 0.05A
Wiring capacitance for
serial diagnostic:
max. 50 nF

Classification:

Standards:
EN ISO 13849-1, IEC 61508
PL:
Category:
PFH value:
SIL:
Mission time:

Note

Wiring and connectors
refer to page 111

Misalignment

Sideways actuation

The long side allows for a max. height misalignment (X) of sensor and actuator of 36 mm (e.g. mounting tolerance or due to guard door sagging).
Increased misalignment, max. 53 mm , possible when the CST 34-S-2 actuator is used. The axial misalignment (Y) is max. $\pm 10 \mathrm{~mm}$.

Head actuation

The front side allows for a maximum transverse misalignment (Z) of approx. 8 mm .

Note

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUSGateway SD-I-DPVO-2 and the UniversalGateway SD-I-U-.... and in the instructions for the integration of the SD-Gateway.

Electronic safety sensor CSS 34

Actuator

Actuator CST－34．－1 and CST－34－S－2＊

－Sensor CSS 34 and actuator are isometric
－Front and lateral actuation of the sensor possible

Actuator

－Small design
－Front and lateral actuation of the sensor possible

Actuator

Actuator CST̄ 180－1＊

－Actuators are isometric， but CST 180－1 incl．H18 clamp
－Front and lateral actuation of the sensor possible

Approvals

原

Ordering detrils

CST 34－（1）－1
No．｜Option｜Description

（1）	V	Frontal actuating surface
	S	Lateral actuating surface

Actuator with double solenoid
for increased misalignment， lateral actuating surface

CST 34－S－2＊

Approvals

原

Ordering details

Small actuator
（enables lateral and frontal actuation of the sensor）

Approvals

原

Ordering detrils

CST－34－S－3＊Also suitable：
Actuator CSS 180 with terminal mounting
＊Certification in combination with safety sensor under preparation

Sensor and actuator must be ordered separately！

Electronic safety sensor CSS 34
Selection table: Actuator

Safety sensor	Actuator	Actuation	Switching distances to IEC 60947-5-3		
Lateral actuation	CST 34-S-1		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	14 mm 12 mm 17 mm	
	CST 34-S-2		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	14 mm 12 mm 17 mm	
CSS 14-34-S ...	CST 34-S-3		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	14 mm 12 mm 17 mm	
	CST 180-1 / CST 180-2		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	$\begin{array}{r} 10 \mathrm{~mm} \\ 8 \mathrm{~mm} \\ 13 \mathrm{~mm} \end{array}$	
Frontal actuation	CST 34-V-1		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	12 mm 10 mm 15 mm	
	CST 34-S-2		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	$\begin{array}{r} 10 \mathrm{~mm} \\ 8 \mathrm{~mm} \\ 16 \mathrm{~mm} \end{array}$	
CSS 12-34-V ...	CST 34-S-3		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	15 mm 13 mm 18 mm	
	CST 180-1 / CST 180-2		$\begin{aligned} & \mathrm{S}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{ao}} \\ & \mathrm{~S}_{\mathrm{ar}} \end{aligned}$	12 mm 10 mm 16 mm	

Series-wiring of the CSS 34 with conventional diagnostic output

Y1 and Y2 = Safety outputs \rightarrow Safety controller

The voltage is supplied to both safety inputs of the last sensor of the chain (starting from the safety controller). The safety outputs of the first sensor are wired to the safety controller.

Series-wiring of the CSS 34 with serial diagnostic function

Y1 and Y2 $=$ Safety outputs \rightarrow Safety controller
SD-IN \rightarrow Gateway \rightarrow Field bus

The safety outputs of the first sensor are wired to the safety controller. The serial Diagnostic Gateway is connected to the serial diagnostic input of the first sensor.

Single device CSS 34F0 with conventional diagnostic output

The CSS 34 F0 safety sensor ensures the direct control of auxiliary contactors1) or relays1). The monitoring of the contactors or relays is enabled by the feedback loop, which consists of the NC contacts of K1, K2. As no other switches are used, the auxiliary contactors1) or relays1) are immediately enabled as soon as the safety guard is closed.

The feedback loop can be extended by an enabling button. The sensor is enabled as soon as the button is pressed. The set-up is shown in the following wiring example of the CSS 34F1. The internal evaluation of the variant F0 has no edge detection of the button. If necessary, the "manual reset" to EN ISO 13849-1 must be executed by means of other components of a local control system.

In this example, the CSS 34F0 safety sensor is connected as single device. To this effect, the safety inputs are connected to 24 VDC.

Direct control of the positive-action relays

Wiring with auxiliary relay to control high-capacity contactors

Series-wiring of the CSS 34 and CSS 34F1 with conventional diagnostic outputs

Diagnostic of the CSS 34 safety sensor with conventional diagnostic output

The safety sensor indicates the operating condition and faults by means of three-colour LED‘s located in the lateral surfaces of the sensor. The green LED indicates that the safety sensor is ready for operation. The sensor is not actuated.

If the actuator is near the limit of the sensor's switching distance, the LED will flash. The flash code can be used to prematurely detect changes in the distance between the sensor and the actuator (e.g. sagging of a guard door). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

LED (red)	Flash codes	Cause	
1 flash pulse	Error output Y1		
2 flash pulses		Error output Y2	
3 flash pulses		Cross-wire Y1/Y2	
4 flash pulses		Ambient temperature too high	
5 flash pulses			Incorrect or defective actuator
Continuous red			Internal failure

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. The electronic diagnostic output signals faults before the safety outputs are disabled, thus enabling a controlled shutdown.

The diagnostic output is not a safety-related output!

The diagnostic output can also be used to detect clearance variations between the sensor and the actuator in the same way as the yellow LED. An active fault causes the diagnostic output to be disabled. The safety outputs are disabled after max. 30 minutes if the fault is not rectified. This signal combination, diagnostic output disabled and safety channels still enabled, can be used to stop the production process in a controlled manner.

Example of the diagnostic function of the CSS 34 or CSS 34F. safety sensor with conventional diagnostic output

Sensor condition					Diagnostic output	Safety outputs	Note
		Green	Red	Yellow			
I.	Supply voltage	On	Off	Off	OV	0 V	Supply voltage on, no evaluation ofthe voltage quality
II.	Actuated	On	Off	On	24 V	24 V	The yellow LED always signals the presence of an actuator within range
III.	Actuated in limit area	On	Off	Flashes $(1 \mathrm{~Hz})$	$\begin{gathered} 24 \mathrm{~V} \\ \text { pulsed } \end{gathered}$	24 V	The sensor must be readjusted before the actuator gets outside of the maximum switching range and the safety outputsare disabled, thus stopping the machine
IV.	Actuated and feedback circuit open *	On	Off	Flashes $(5 \mathrm{~Hz})$	24 V	0 V	The sensor waits for a signal from the feedback circuit: F0 - Close feedback circuit F1 - Trailing edge on feedback circuit
V.	Actuated in limit area and feedback circuit open *	On	Off	Flashes alternatively $(1 \mathrm{~Hz} / 5 \mathrm{~Hz})$	$\begin{gathered} 24 \mathrm{~V} \\ \text { pulsed } \end{gathered}$	0 V	The LED indication combines the sensor functions III and IV .
VI.	Failure warning, sensor actuated	On	Flashes	On	0 V	24V	After 30 minutes if the fault is not eliminated
VII.	Failure	On	Flashes	On	0 V	0 V	refer to table „Flash codes"

* only for CSS 34F0/F1 with feedback circuit

Diagnostic of the CSS 34 safety sensor with serial diagnostic function

Sensors with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output.
If CSS sensors are daisy-chained, the safety outputs as well as the inputs and outputs of the diagnostic channels are wired in series.
Max. 31 safety sensors can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the responseand diagnostic data is automatically andpermanently written in an input byte of the PLC for each safety sensor in the series-wiredchain. The request data for each safety sensorare transmitted to the component through anoutput byte of the PLC.

In case of a communication error between the fieldbus gateway and the safety sensor, the switching condition of the safety switch is maintained.

Failure

A failure has occurred, which resulted in theimmediate deactivation of the safety outputs. The failure is reset when the failure cause iseliminated and bit 7 of the request bytechanges from 1 to 0 or when the safetyguard is opened.Failures at the safety outputs will only bedeleted upon the next release, as theneutralisation of the failure cannot bedetected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure waming is reset when the failure cause is eliminated.

I/O data and diagnostic data

Communication directions:		Request byte: from the PLC to the local CSS		
		Response byte: from the local CSS to the PLC		
		Warning/failure byte: from the local CSS to the PLC		
Bit ${ }^{\circ}$	Request byte	Response byte	Waming or failure byte Failure wamings	Failure messages
Bit 0:	Failure reset	Safety output enabled	Error output Y1	Error output Y1
Bit 1:	---	Actuator detected	Error outputY2	Error outputY2
Bit 2:	---	---	Cross-wire	Cross-wire
Bit 3:	---	Start function is missing / Feedback circuit opened (only CSS 34F.)	Ambient temperature too high	Ambient temperature too high
Bit 4:	---	Input condition X1 and X2	---	Incorrect or defective actuator
Bit 5:	---	Actuated in limit area	Internal failure	Internal failure
Bit 6:	---	Failure waming	Internal failure error between fieldbus gateway and safety sensor	---
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	---

The described condition is obtained, when bit =1

Function of the diagnostic LED's, the serial status signals and the safety outputs
Flash code as in previous version

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}

\hline \multirow[t]{2}{*}{System condition} \& \multirow[t]{2}{*}{| LED`s |
| :--- |
| green |} \& \multirow[b]{2}{*}{red} \& \multirow[b]{2}{*}{yellow} \& \multirow[t]{2}{*}{Safety outputs Y1, Y2} \& \multicolumn{8}{|l|}{Status signalsserial diagnostic byte Bit n°}

\hline \& \& \& \& \& 7 \& 6 \& 5 \& 4 \& 3 \& 2 \& 1 \& 0

\hline Supply voltage on, not actuated \& On \& Off \& Off \& 0 V \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Actuated, feedback circuit open / not actuated (only CSS 34F.) \& On \& Off \& Flashes

$$
(5 \mathrm{~Hz})
$$ \& 0 V \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 1 \& 0

\hline Actuated, safety outputs released \& On \& Off \& On \& 24 V \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated in limit area \& On \& Off \& Flashes

$$
(1 \mathrm{~Hz})
$$ \& 24 V \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated, failure waming \& On \& On/Flashes \& On \& 24 V \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Actuated, failure \& On \& On/Flashes \& On \& 0 V \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0

\hline
\end{tabular}

The shown bit sequence of the diagnostic byte is an example. A different combination of theoperating conditions will lead to a change of the bit sequence.

Up-to-date without fail. The online product catalogue

Sensor CSP 34

- Tampering protection by paired coding of safety sensor and actuator
- On-site acknowledgment (ordering suffix F2)
- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of up to 31 sensors
- Max. length of the sensor chain 200 m
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet
- With integrated connector:
- Thermoplastic enclosure

Actuator CSP 34-S-1

- CSP 34 safety sensor and CSP 34-S-1 actuator are isometric
- Sensor and actuator must be ordered separately
- 20 different actuator codes available

Approvals

뚱 (【u

C

Ordering detrails

CSP 11-34-D-M-ST

No.	Option	Description
		without on-site acknowledgment with on-site acknowledgment

Sensor and actuator must be ordered separately!

Approvals

Certification in combination with safety sensor

Ordering details

CSP 34-S-1-1
No. | Option | Description
(1) 1 . $120 \mid$ Coding 1-20

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1,
IEC 61508
Enclosure: glass-fibre reinforced thermoplastic Mode of operation:
inductive
Actuator: coded CSP 34-S-1

Series-wiring: max. 31 components

Cable length: max. 200 m
Switching distances to IEC 60947-5-3:

Rates switching distance $S_{n}:$	11 mm
Assured switch-on distance $S_{a 0}:$	8 mm
Assured switch-off distance $S_{a r}$:	15 mm
Hysteresis:	max. 1.5 mm
Repeat accuracy:	$<0.5 \mathrm{~mm}$
Switching frequency f:	3 Hz
Integrated connector:	M12, 8-pole

Ambient conditions:

Ambient temperature T_{u} :
For output current

≤ 0.1 A/output	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
≤ 0.25 Aloutput	$-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Storage and transport	
temperature:	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Resistance to vibration:	$10 \ldots 55 \mathrm{~Hz}$,
	amplitude 1 mm
Resistance to shock:	$30 \mathrm{~g} / 11 \mathrm{~ms}$

Protection class: IP65, IP67 to EN 60529

Electrical data:

$\left.\begin{array}{lr}\text { Rated operating voltage } \mathrm{U}_{\mathrm{e}}: & \begin{array}{r}24 \mathrm{VDC} \\ -15 \% /+10 \%\end{array} \\ \text { (stabilised PELV) }\end{array}\right\}$

Note

Requirements for the safety controller
Dual-channel safety input, suitable for p-type sensors with normally-open (NO) function. The internal function tests of the sensors cause the outputs to cyclically switch off for max. 0.5 ms , this must be tolerated by the safety controller. The safety controller must not be equipped with cross-wire detection.

Technical data

Safety inputs X1/X2:
Rated operating voltage U_{e} :
24 VDC
$-15 \% /+10 \%$
PELV gem. IEC 60204-1
Rated operating current I_{e} :
1 A
Safety outputs Y1/Y2: NO function, 2-channel,
p-type, short-circuit proof
Utilisation category:
DC-12, DC-13
Rated operating voltage $\mathrm{U}_{\mathrm{e} 1}$:
$\min .\left(\mathrm{U}_{\mathrm{e}}-1 \mathrm{~V}\right)$
$<1 \mathrm{~V}$
Voltage drop:
Rated operating current $\mathrm{I}_{\mathrm{e} 1}$:
max. 0.25 A , ambient temperature-dependent
Leakage current I_{r} :
$<0.5 \mathrm{~mA}$
Minimum operating current I_{m} :
Diagnostic output: p-type, short-circuit proof
Utilisation category: DC-12, DC-13
Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$:
Voltage drop: $\min .\left(U_{e}-5 \mathrm{~V}\right)$
$<5 \mathrm{~V}$
Rated operating current $\mathrm{I}_{\mathrm{e} 2}$:
$\max .0 .05 \mathrm{~A}$

Classification:

Standards: EN ISO 13849-1, IEC 61508
PL:
e
Category:
PFH value:
SIL:
Mission time:

Note

Coding of safety sensor and actuator

In order to activate the safety function (coding) of the CSP 34 for the first time, the actuator to be assigned first must be brought into the detection area of the activated safety sensor. The automatic teaching cycle of the actuator code will be signalled by the red LED on the safety sensor being activated and the yellow LED simultaneously flashing. After 10 seconds, brief cyclic flashing signals signal that the operating voltage of the safety sensor must be shut off for a few seconds, in order to save the code.
When the operating voltage is switched back on, the actuator must be redetected in order to definitively assign safety sensor and actuator. Now, the safety sensor no longer can be activated by another coding.
In order to protect the coding, the ordering details of the actuator are hidden by the mounting bracket.

On-site acknowledgment

(ordering suffix F2)

For the guard door monitoring using a CSP 34F 2 safety sensor, a reset/acknowledgment button for instance must be positioned at the safety guard in such manner that the operator has an overview of the hazardous area. When the button is pushed, a 24 VDC signal is generated at the reset input of the CSP 34 F 2 . When the safety guard is closed, the safety outputs are enabled with the trailing edge of the reset signal. After opening of the safety guard, a new acknowledgment is required prior to the next enabling.

Misalignment

Actuation through the revolving side of sensor and actuator

Possible misalignment

The actuating curves show the switch-on and switch-off distances of the CSP 34 sensor by the approach of the actuator.

Legend

S Switching distance
$X \quad$ Possible misalignment through the long side with identification plate
Y Possible misalignment through the small side with identification plate
$S_{\text {on }}$ Switch-on distance
$S_{\text {off }}$ S witch-off distance
S_{h} Hysteresis area $\mathbf{s}_{\mathbf{h}}=\mathbf{s}_{\text {on }} \mathbf{-} \mathbf{s}_{\text {off }}$
$\mathrm{S}_{\mathrm{a} \text { 。 }}$ Assured switch-on distance
$\mathrm{S}_{\mathrm{ar}} \quad$ Assured switch-off distance

Note

Wiring and connectors
refer to page 111

Misalignment

The long side allows for a max. displacement of sensor and actuator of 30 mm (e.g. mounting tolerance or due to guard door sagging). The long side allows for a maximum transverse misalignment of approx. 8 mm .

Series-wiring of the CSP 34 without on-site acknowledgment

Y1 and Y2 $=$ Safety outputs \rightarrow Safety controller

Series-wiring of the CSP 34F2 with on-site acknowledgment

Y1 and Y2 = Safety outputs \rightarrow Safety controller

CSP 34F2 safety sensors can be used in any position in a series-wired configuration. To enable the outputs, the reset button with edge detection must be acknowledged on site when the safety sensor is actuated. The acknowledgment enables a targeted control of a hazardous area prior to the start of the plant.

Electronic safety sensor CSP 34

Diagnostic of the CSP 34 safety sensor

The safety sensor indicates the operating condition and faults by means of three－colour LED＇s located in the lateral surfaces of the sensor． The green LED indicates that the safety sensor is ready for operation．The sensor is not actuated．

If the actuator is near the limit of the sensor＇s switching distance，the yellow LED will flash．The flash code can be used to prematurely detect changes in the distance between the sensor and the actuator（e．g．sagging of a guard door）．The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled，thus stopping the machine．If an error is detected，the red LED will be activated．

LED（red）	Flash codes	Cause
1 flash pulse	$\square \square$	Error output Y 1
2 flash pulses	$\square \square$	E rror output Y2
3 flash pulses	$\square \square$	Cross－wire Y 1／Y2
4 flash pulses	■ூூ	Ambient temperature too high
5 flash pulses	■以にちூ	Incorrect or defective actuator
Continuous red	\longrightarrow	Internal failure

The short－circuit proof diagnostic output OUT can be used for central indicating or control functions，for instance in a PLC．The electronic diagnostic output signals faults before the safety outputs are disabled，thus enabling a controlled shutdown．

The diagnostic output is not a safety－related output！
The diagnostic output can also be used to detect clearance variations between the sensor and the actuator in the same way as the yellow LED．An active fault causes the diagnostic output to be disabled．The safety outputs are disabled after max． 30 minutes if the fault is not rectified．This signal combination，diagnostic output disabled and safety channels still enabled，can be used to stop the production process in a controlled manner．

Note（for F2 variant with local acknowledge）

The inverse signal combination，diagnostic output enabled and safety outputs disabled，can be used to generate a signal to trigger a local acknowledge．

Sensor condition		LED＇s green	yellow	red	Diagnostic output	Safety outputs Y1，Y2	Note
1.	Supply voltage on， not actuated	On	Off	Off	0 V	0 V	Voltage on，no evaluation of the voltage quality
II．	Actuated，safety outputs released	On	Off	On	24 V	24 V	The yellow LED always signals the pre－ sence of an actuator within range
III．	Actuated，actuator in limit area	On	Off	Flashes $(1 \mathrm{~Hz})$	$\begin{gathered} 24 \mathrm{~V} \\ \text { pulsed } \end{gathered}$	24 V	The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled， thus stopping the machine
IV．	Actuated and safety outputs disabled ${ }^{1)}$	On	Off	Flashes $(5 \mathrm{~Hz})$	24 V	0 V	Sensor waiting for on－site acknowledgment
V．	Actuated in limit area and safety outputs disabled ${ }^{1)}$	On	Off	Flashes alternatively $(1 \mathrm{~Hz} / 5 \mathrm{~Hz})$	$\begin{gathered} 24 \mathrm{~V} \\ \text { pulsed } \end{gathered}$	0 V	The LED indication combines the sensor functions III and IV；Sensor waiting for on－site acknowledgment
VI．	Actuated， Failure warning	On	On／ Flashes	On	0 V	24 V	After 30 minutes－＞failure
VII．	Actuated，Failure	On	On／ Flashes	On	0 V	0 V	－

[^1]
A basket full of solutions

 Food

Electronic solenoid interlock MZM 100 and
 safety sensor with interlocking function MZM 100 B and MZM 120

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $3,5 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Patented operating principle for solenoid interlocks (for personal protection applications)
- The safety switchgear must be used as end stop
- Variably adjustable latching
- Latching force generated through permanent magnet, approx. 30 N , also in de-energised condition
- Accurate adjustment through slotted holes
- Actuator free from play, i.e. neutralisation of undesired noises
- Sensor technology permits an offset between actuator and interlock

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation, e.g. sagging of a safety guard

MZM 100

Solenoid interlock

(Solenoid interlock monitoring)

- Innovating and unique operating principle
- Accurate adjustment through slotted holes
- Power to lock principle
- Solenoid interlock must be used as end stop.
- Automatic latching with variable adjustment
- Latching force through permanent magnet approx. 30 N , also in de-energised condition
- Sensor technology permits an offset between actuator and interlock of $\pm 5 \mathrm{~mm}$ vertically and $\pm 3 \mathrm{~mm}$ horizontally
- Intelligent diagnostic signalling of failures
- 3 LED's to show the operating status
- Series-wiring of max. 31 components, without detriment to the category
- AS-Interface Safety at Work available

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1, IEC 61508
Enclosure:
thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations (for guards $\leq 5 \mathrm{~kg}$;
actuating speed $\leq 0.5 \mathrm{~m} / \mathrm{s}$)
Electrically ajdustable
latching force (RE):
30 N
Permanent magnet (M) :
Holding force $F_{\text {max }}$ typically:
N ... 100 N

Holding force F guaranteed:
30 N

Protection class:
Protection class:
Overvoltage category:
Degree of pollution:
Connection:

Series-wiring:

Cable length:
 max. 31 components max. 200 m
(Cable length and cable section alter the voltage drop depending on the output current)

Ambient conditions:

Ambient temperature: Storage and transport
temperature:
Relative humidity:

$$
\begin{aligned}
& -25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}
\end{aligned}
$$

$$
30 \% \text {... 95\%, }
$$

non-condensing, no icing
Resistance to vibration:
10... 150 Hz
($0.35 \mathrm{~mm} / 5 \mathrm{~g}$)
Resistance to shock:
Switching frequency f:
Response time:
$30 \mathrm{~g} / 11 \mathrm{~ms}$
1 Hz
$<150 \mathrm{~ms}$
Duration of risk:
$<150 \mathrm{~ms}$
<4 s
Time to readiness:

24 VDC -15\% / +10\%
(stabilised PELV)
max. 0.6 A plus current
through the safety outputs
1 A
800 V
32 VDC
Device insulation:
≤ 2 A to UL 508; depending on the number of components and loads (Y1, Y2 and OUT)

Technical data

Safety inputs X1 and X2:

Voltage range $-3 \mathrm{~V} \ldots 5 \mathrm{~V}$: Low

Voltage range $15 \mathrm{~V} \ldots 30 \mathrm{~V}$: High,
typically 4 mA at 24 V
Safety outputs Y1 and Y2: p-type,
short-circuit proof
$\mathrm{U}_{\mathrm{e} 1}$: 24 V
$\mathrm{I}_{\mathrm{e} 1}: \quad 0.25 \mathrm{~A}$
Voltage drop: $<1 \mathrm{~V}$
Utilisation category: DC-13
Leakage current I_{r} : $\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT: p-type, short-circuit proof
$U_{\text {e }}: \quad 0 \mathrm{~V}$ up to 4 V under U
$\mathrm{I}_{\mathrm{e} 2}$: max. 0.05A
Utilisation category: DC-13
Wiring capacitance for
serial diagnostic:
max. 50 nF

Solenoid control IN:

$\begin{array}{rr}\text { Voltage range }-3 \mathrm{~V} \ldots 5 \mathrm{~V} \text { : } & \text { Low } \\ \text { Voltage range } 15 \mathrm{~V} \ldots 30 \mathrm{~V} \text { : } & \text { High, } \\ & \text { typically } 10 \mathrm{~mA} \text { at } 24 \mathrm{~V} \text {, }\end{array}$ dynamically 20 mA
Solenoid:
LED functions
Green:
Yellow:
Supply voltage on Operating status
Red:
Error
Classification:
Standards:
EN ISO 13849-1, IEC 61508
PL:
e
Category:
4
PFH value:
$3,5 \times 10^{-9} / \mathrm{h}$
suitable for SIL 3 applications
20 years
The latching force of the MZM 100 can be set in steps of approx. 10 N each within a range of approx. 30 N (factory setting) to approx. 100 N . To this end, the adjustment target MZM 100 TARGET is used directly on the fitted MZM 100.

Approvals

Ordering details

MZM 100 (1)-(2)(3)(4)-A
No. | Option
Description

(3)	
(4)	M

Without latching

 Adjustable latching force approx. 30 ... 100 N Permanent magnet approx. 30 NThe solenoid interlock, the actuating unit and the adjustment target must be ordered separately!

A detailed product description can be found in the „Electronic Safety Sensors and Solenoid Interlocks" brochure.

Connection

Integrated connectors

M23, (8+1)-pole (Suffix -ST)

M12, 8-pole
(Suffix -ST2)

Actuators and accessories refer to page 67

Wiring and connectors
refer to page 112
Wiring diagrams refer to page 70

MZM 100 B

Safety sensor with interlocking function (Actuator monitoring)

- Innovating and unique operating principle
- Accurate adjustment through slotted holes
- Power to lock principle
- Safety sensor must be used as end stop.
- Automatic latching with variable adjustment
- Latching force through permanent magnet approx. 30 N , also in de-energised condition
- Sensor technology permits an offset between actuator and sensor of $\pm 5 \mathrm{~mm}$ vertically and $\pm 3 \mathrm{~mm}$ horizontally
- Intelligent diagnostic signalling of failures
- 3 LED's to show the operating status
- Series-wiring of max. 31 components, without detriment to the category
- AS-Interface Safety at Work available

Approvals

霖	(11) ${ }_{\text {us }}{ }^{\text {a }}$ (E	
Oroering detris		
MZM 100 B (1)-(2)RE(3)-A		
No.	Option	Description
(1)	$\begin{aligned} & \text { ST } \\ & \text { ST2 } \end{aligned}$	Connector M23, (8+1)-pole Connector M12, 8-pole
(2)	1P2PW2	1 diagnostic output and 2 safety outputs, all p-type with combined diagnostic signal: safety guard closed and can be locked
	SD2P	Serial diagnostic output and 2 safety outputs, p-type
(3)	M	Permanent magnet approx. 30 N

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1, IEC 61508
Enclosure:
thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations (for guards $\leq 5 \mathrm{~kg}$;
actuating speed $\leq 0.5 \mathrm{~m} / \mathrm{s}$)
Electrically ajdustable
latching force (RE):
30 N
Permanent magnet (M) :
Holding force $F_{\text {max }}$ typically:
Holding force F guaranteed:
Protection class:
Protection class:
P65 / IP67

Overvoltage category:
Degree of pollution:
Connection:
Switching distances to IEC 60947-5-3:

- assured switching distance s_{ao} : 0 mm
- assured switch-off distance s_{ar} : 1 mm

Series-wiring: max. 31 components

Cable length:
max. 200 m
(Cable length and cable section alter the voltage drop depending on the output current)

Ambient conditions:

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ Storage and transport
temperature:
Relative humidity:
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ 30\% ... 95\%,
non-condensing, no icing
Resistance to vibration:
Resistance to shock:
Switching frequency f:
$10 \ldots 150 \mathrm{~Hz}$
($0.35 \mathrm{~mm} / 5 \mathrm{~g}$)

Response time:
$<150 \mathrm{~ms}$
Duration of risk:
$<150 \mathrm{~ms}$
Time to readiness:
<4 s
Electrical data:
U_{e} :

Operating current:
24 VDC -15\% / +10\%
(stabilised PELV)
max. 0.6 A plus current through the safety outputs

$\mathrm{I}_{\mathrm{e}}:$	1 A
$\mathrm{U}_{\mathrm{imp} p}:$	800 V

U: 32 VDC
Device insulation: ≤ 2 A to UL 508;
depending on the number of components and loads (Y1, Y2 and OUT)

Ordering details

The safety sensor with interlocking function, the actuating unit and the adjustment target must be ordered separately!

The wiring examples of the MZM 100 B are identical to those of the MZM 100 series (refer to page 70).

Diagnostic tables refer to page 73 .

Technical data

Safety inputs X1 and X2:

Voltage range $-3 \mathrm{~V} \ldots 5 \mathrm{~V}$: Low

Voltage range $15 \mathrm{~V} \ldots 30 \mathrm{~V}$: High,
typically 4 mA at 24 V
Safety outputs Y1 and Y2: p-type,
short-circuit proof
$\mathrm{U}_{\mathrm{e} 1}: \quad 24 \mathrm{~V}$
$\mathrm{I}_{\mathrm{e} 1}: \quad 0.25 \mathrm{~A}$
Voltage drop: $<1 \mathrm{~V}$
Utilisation category: DC-13
Leakage current I_{r} : $\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT: p-type, short-circuit proof
$\mathrm{U}_{\mathrm{e} 2}: \quad 0 \mathrm{~V}$ up to 4 V under U_{e}
$\mathrm{I}_{\mathrm{e} 2}$: max. 0.05A
Utilisation category: DC-13
Wiring capacitance for
serial diagnostic:
max. 50 nF
Solenoid control IN:
Voltage range $-3 \mathrm{~V} \ldots 5 \mathrm{~V}$: Low
Voltage range $15 \mathrm{~V} \ldots 30 \mathrm{~V}$: High,
typically 10 mA at 24 V ,
dynamically 20 mA
Solenoid:
LED functions
Green:
Supply voltage on
Yellow: Operating status
Red:
Error
Classification:
Standards:
EN ISO 13849-1, IEC 61508
PL:
e
Category:
4
PFH value:
$3,5 \times 10^{-9} / \mathrm{h}$
SIL:
suitable for SIL 3 applications
Mission time:
20 years
The latching force of the MZM 100 B can
be set in steps of approx. 10 N each within a range of approx. 30 N (factory setting) to approx. 100 N . To this end, the adjustment target MZM 100 TARGET is used directly on the fitted MZM 100 B.

Connection

Integrated connectors
M23, (8+1)-pole (Suffix -ST)

M12, 8-pole
(Suffix -ST2)

Actuators and accessories refer to page 67

Wiring and connectors
refer to page 112
Wiring diagrams refer to page 70
Diagnostic function refer to page 71

Safety monitoring module

Interlocks with power to lock principle may only be used in special cases after a thorough evaluation of the accident risk, since the guarding device can immediately be opened on failure of the electrical power supply or when the main switch is opened.

Diagnostic

Depending on the component variant, the following diagnostic signals are transmitted:

MZM 100 ..-1P2PW variant:

OUT Combined diagnostic signal: safety guard closed and magnetic interlock locked

MZM 100 B ..-1P2PW2 variant
OUT Combined diagnostic signal: safety guard closed and can be locked

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.

The diagnostic output is not a safetyrelevant output!

Misalignment

Misalignment

Actuator MVM 100-B1.1

- The magnetic interlocks and the actuator unit must be ordered separately!
- Actuator free from play, i.e. neutralisation of undesired noises

MZM 100 TARGET

- Adjustment target for variable adjustment of the latching force of the MZM 100
- Gradually adjustable by steps of approx. 10 N each within the range from approx. 30 N to 100 N
-The adjustment target must be ordered separately
separately

System components

Mounting kit MS MZM 100-W

Ordering details
Adjustment target

Ordering details

Mounting kit
MS MZM 100-W

MZM 120

Safety sensor with interlocking function MZM 120 B:
enabling signal, when safety guard closed MZM 120 BM:
enabling signal, when safety guard closed and locked (without force monitoring)

- Metal components with hygiene-compliant NEDOX ${ }^{\circledR}$ SF-2 coating
- Suitable for contact with foodstuffs
- Hard surface
- Excellent resistance to abrasion
- Excellent resistance to corrosion
- Excellent anti-adhesive features
- Protection class IP69K
- Power to lock principle
- Safety sensor must be used as end stop.
- Holding force max. 500 N
- Variably adjustable latching
- Sensor technology permits an offset between actuator and sensor of $\pm 5 \mathrm{~mm}$ vertically and $\pm 3 \mathrm{~mm}$ horizontally
- Series-wiring of max. 31 components

Approvals

oreeing details

MZM 120 (1) ST2-(2)RE-A
No. Option
Actuator monitored Combined actuator detection and interlocking function 1 diagnostic output and 2 safety outputs, all p-type wh and can be locked
SD2P Serial diagnostic output and 2 safety outputs, p-type

Technical data

Standards: IEC 60947-5-3, EN ISO 13849-1, IEC 61508
Material of the enclosure: glass-fibre reinforced thermoplastic, self-extinguishing
Mechanical life
≥ 1 million operations (for guards $\leq 5 \mathrm{~kg}$; actuating speed $\leq 0.5 \mathrm{~m} / \mathrm{s}$)
Electrically ajdustable
latching force (RE)
Holding force $F_{\text {max }}$ typically:
30 N ... 80 N

Holding force F guaranteed:
Protection class:
500 N
300 N

Protection class: IP67, IP69K

II, 回
Overvoltage category:
Degree of pollution:
Connection:
connector M12

Switching distances to IEC 60947-5-3

- assured switching distance $\mathrm{s}_{\mathrm{a} 0}$:

0 mm

- assured switch-off distance s_{ar} : 1 mm

Series-wiring:
 max. 31 components

Cable length:
max. 200 m
(Cable length and cable section alter the voltage drop depending on the output current)

Ambient conditions:

$\begin{array}{lr}\text { Ambient temperature: } & -25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} \\ \text { Storage and transport } & -25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \\ \text { temperature: } & 30 \% \ldots 95 \%, \\ \text { Relative humidity: } & \end{array}$
non-condensing, no icing
Resistance to vibration:
Resistance to shock:
Switching frequency f:
35 m
$\quad 30 \mathrm{~g} / 11 \mathrm{~ms}$
Response time: $<150 \mathrm{~ms}$
Duration of risk:
$<150 \mathrm{~ms}$
Time to readiness:
<4 s
Electrical data:
U_{e} :
24 VDC -15\% / +10\%
(stabilised PELV)
Operating current:
max. 0.6 A plus current
through the safety outputs

$\mathrm{I}_{\mathrm{e}}:$	1 A
$\mathrm{U}_{\text {imp }}:$	800 V
$\mathrm{U}_{\mathrm{i}}:$	32 VDC
Device insulation:	$\leq 2 \mathrm{~A}$ to UL $508 ;$

depending on the number of components and loads (Y1, Y2 and OUT)

Note

Interlocks with power to lock principle may only be used in special cases after a thorough evaluation of the accident risk, since the guarding device can immediately be opened on failure of the electrical power supply or when the main switch is opened.

The safety sensor with interlocking function, the actuating unit and the adjustment target must be ordered separately!

Technical data

Safety inputs X1 and X2:

Voltage range $-3 \mathrm{~V} \ldots 5 \mathrm{~V}$: Low

Voltage range 15V ... 30V: High,
typically 4 mA at 24 V
Safety outputs Y1 and Y2: p-type,
short-circuit proof
U 1 : 24 V
$\mathrm{I}_{\mathrm{e} 1}: \quad 0.25 \mathrm{~A}$
Voltage drop: $<1 \mathrm{~V}$
Utilisation category: DC-13
Leakage current I_{r} : $\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT: p-type, short-circuit proof
$\mathrm{U}_{\mathrm{e} 2}: \quad 0 \mathrm{~V}$ up to 4 V under U_{e}
$I_{\mathrm{e} 2}$: max. 0.05A
Voltage drop:
< 4 V
Utilisation category:
DC-13
Wiring capacitance for
serial diagnostic:
max. 50 nF
Solenoid control IN:
$\begin{array}{rr}\text { Voltage range }-3 \mathrm{~V} \ldots 5 \mathrm{~V} \text { : } & \text { Low } \\ \text { Voltage range } 15 \mathrm{~V} \ldots 30 \mathrm{~V} \text { : } & \text { High, } \\ & \text { typically } 10 \mathrm{~mA} \text { at } 24 \mathrm{~V} \text {, }\end{array}$ dynamically 20 mA
Solenoid:
100\% ED

LED functions

Green:	Supply voltage on
Yellow:	Operating status

Error
Classification:
Standards:
EN ISO 13849-1, IEC 61508
PL:
e
$\begin{array}{lr}\text { Category: } & 4 \\ \text { PFH value: } & 3,5 \times 10^{-9} / \mathrm{h}\end{array}$
SII
suitable for SIL 3 applications
Mission time:
20 years
The latching force of the MZM 120 can be set in steps within a range of approx. 30 N (factory setting) to approx. 80 N . To this end, the adjustment target MZM 100 TARGET is used directly on the fitted MZM 120.

Connection

Integrated connectors

M12, 8-pole
(Suffix -ST2)

Actuators and accessories refer to page 69

Wiring and connectors
refer to page 112
Wiring diagrams refer to page 70
Diagnostic function refer to page 75

Diagnostic

Depending on the component variant, the following diagnostic signals are transmitted:

1P2PW2-Variant:

OUT
Combined diagnostic signal: safety guard closed and can be locked

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.

The diagnostic output is not a safetyrelevant output!

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUSGateway SD-I-DPV0-2 and the UniversalGateway SD-I-U-.... and in the instructions for the integration of the SD-Gateway.

Misalignment

Misalignment

Actuator MVM 120-B1.1

- Metal components with hygiene-compliant NEDOX ${ }^{\circledR}$ SF-2 coating
- Actuator free from play, i.e. neutralisation of undesired noises
-The magnetic interlocks and the actuator unit must be ordered separately!

System components

Adjustment target MZM 100 TARGET

Approvals

因
Certification in combination with safety sensor under preparation

Ordering detrils

Actuator
MZM 120-B1.1

Ordering details
Adjustment target
MZM 100 TARGET

Series-wiring of the MZM 100 (B) / MZM 120 with conventional diagnostic output

Y1 and Y2 $=$ Safety outputs \rightarrow Safety controller
The voltage is supplied to both safety inputs of the last safety switchgear of the chain (considered from the safety-monitoring module). The safety outputs of the first safety switchgear are connected to the safety-monitoring module.

Series-wiring of the MZM 100 (B) / MZM 120 with serial diagnostic function

Y1 and Y2 = Safety outputs \rightarrow Safety controller
SD-IN \rightarrow Gateway \rightarrow Field bus
The safety outputs of the first safety switchgear are connected to the safety-monitoring module.
The serial Diagnostic Gateway is connected to the serial diagnostic input of the first safety switchgear.

Diagnostic of the MZM 100 solenoid interlock with diagnostic output

The operating condition of the solenoid interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.
If a failure or failure warning is detected, the red LED will be activated.

Blinkcodes (red)	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y1	30 min	E rror in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	E rror in output test or voltage at output Y2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	Actuator (target) error	30 min
5 flash pulses	Holding force error	Cross-wire between the output cables or error at both out- puts. After 30 min., voltage must be switched on/off	
6 flash pulses	0 min	Wrong or defective actuator	
10 flash pulses	Magnet temperature too high	The required holding force $>500 \mathrm{~N}$ is not obtained (misalignment/soiling).	
Continuous red	Internal failure	The magnet is too hot: $\mathrm{T}>70{ }^{\circ} \mathrm{C}$	

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!

Depending on the component variant, thefollowing diagnostic signals are transmitted:
OUT Combined diagnostic signal: safety guard closed and solenoid interlock locked

Failure

Failures, which no longer guarantee the proper functioning of the MZM 100 solenoid interlock (internal failures), will result in the deactivation of the safety outputs for as long as the risk persists. Failures, which do not immediately affect the safety function of the MZM 100 solenoid interlock (crosswire, temperature error, shortcircuit + 24 VDC at safety output), will result in a delayed switch-off (refer to table).

After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. When the safety guard is relocked, the safety outputs are enabled.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

System condition	Solenoid control IN	LED green	red	yellow	Safety outputs Y1, Y2	Diagnostic output OUT
Safety guard open	0 V	On	Off	Off	0 V	0 V
Safety guard closed, actuator in	0 V	On	Off	Flashes	0 V	24 V
Safety guard closed and locked	24 V	On	Off	On	24 V	24 V
Safety guard closed, holding force too low	24 V	On	Off	Flashes	0 V	0 V
Failure warning ${ }^{1)}$, safety guard locked	24 V	On	Flashes ${ }^{2)}$	On	24 V	0 V
Failure	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Off	0 V	0 V
Unauthorized violent separation of solenoid interlock and actuator	24 V	On	Flashes ${ }^{2)}$	Flashes ${ }^{2)}$	0 V	0 V

[^2]
Diagnostic of the MZM 100 solenoid interlock with serial diagnostic function

Magnetic interlocks with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If solenoid interlocks are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Max. 31 solenoid interlocks can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the request and response bytes is automatically and permanently written in an input byte of the PLC for each solenoid interlock in the series wired chain. The request data for each magnetic
interlock are transmitted to the component through an output byte of the PLC

In case of a communication error between the fieldbus gateway and the solenoid interlock, the switching condition of the solenoid interlock is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Diagnostic failure (waming)

If an failure (warning) is signalled in an answer byte, detailed information can be read out about this failure (warning)

I/O data and diagnostic data

Communication directions: Request byte:
Response byte: Warning/failure byte:
from the PLC to the local electronic safety switchgear from the local electronic safety switchgear to the PLC from the local electronic safety switchgear to the PLC

| Bit \mathbf{n}° | Request byte | Request byte | Diagnostic
 Failure waming | Diagnostic
 Failure |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bit 0: | Magnet in, failure reset | Safety output enabled | E rror output Y1 | E rror output Y1 |
| Bit 1: | Latching force bit | Actuator detected | Error output Y2 | Error output Y2 |
| Bit 2: | Latching force bit | Solenoid interlock locked | Cross-wire | Cross-wire |
| Bit 3: | Latching force bit | --- | Magnet temperature too high | Magnet temperature too high |
| Bit 4: | --- | Input condition X1 and X2 | Locking blocked or F <500 N | Wrong or defective actuator |
| Bit 5: | --- | --- | Internal failure | Internal failure |
| Bit 6: | --- | Failure warning | Communication error between
 fieldbus gateway and solenoid
 interlock | Unauthorised violent separa-
 tion of solenoid interlock and
 actuator |
| Bit 7: | Failure reset | Failure (enabling path | Operating voltage too low | Operating voltage too low |

The described condition is obtained, when bit =1

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

System condition	LED`s green	red	yellow	Safety outputs Y1, Y2	Response byte Bit ${ }^{\circ}$							
					7	6	5	4	3	2	1	0
Safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator present	On	Off	Flashes	0 V	0	0	0	X	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	1	0	1	1	1
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	On	Off	Flashes	0 V	0	0	0	1	0	0	1	0
Failure warning ${ }^{1)}$, safety guard locked	On	Flashes ${ }^{2)}$	On	24 V	0	1	0	1	0	1	1	1
Failure	On	Flashes ${ }^{2)}$	Off	0 V	1	0	0	X	0	X	X	0

[^3]
Diagnostic of the MZM 100 B sefety switch with diagnostic output

The operating condition of the solenoid interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. If a failure or failure warning is detected, the red LED will be activated.

If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

Flash codes (red)	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y1	30 min	Error in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	Error in output test or voltageat at output Y2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	30 min	Cross-wire between the output cables or error at both outputs. After 30 min., voltage must beswitched on/off.
5 flash pulses	Actuator (target) error	0 min	Wrong or defective actuator
6 flash pulses	Holding force error	0 min	The required holding force $>500 \mathrm{~N}$ is not obtained (misalignment/soiling).
10 flash pulses	Magnet temperature too high	0 min	The magnet is too hot: $\mathrm{T}>70^{\circ} \mathrm{C}$
Continuous red	Interner Fault	0 min	

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. (refer to table)
The diagnostic output is not asafety-relevant output!

Failure

Failures, which no longer guarantee the proper functioning of the safety switch (internal failures), will result in the deactivation of the safety outputs for as long as the risk persists. Failures, which do not immediately affect the safety function of the safety switch (cross-wire, temperature error, shortcircuit +24 VDC at safety output), will result in a delayed switch-off (refer to table).

After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. When the safety guard is relocked, t he safety outputs are enabled..

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

The diagnostic function of the MZM 100 B safety switch with additional interlocking function

System condition	Solenoid control IN	LED green	red	yellow	Safety outputs Y1, Y2	Diagnostic output OUT
Safety guard open	0 V	On	Off	Off	0 V	0 V
Safety guard closed, actuator in	0 V	On	Off	Flashes	24 V	24 V
Safety guard closed and locked	24 V	On	Off	On	24 V	24 V
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	24 V	On	Off	Off	0 V	0 V
Failure warning ${ }^{11}$, actuator in	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	blinkt/ On	24 V	0 V
Failure	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Off	0 V	0 V

[^4]
Diagnostic of the MZM 100 B safety switch with serial diagnostic function

Safety switches with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If safety switches are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Max. 31 safety switches can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the request and response bytes is automatically and permanently written in an input byte of the PLC for each safety switch in the series-wired chain. The request data for each safety switch are transmitted to the component through anoutput byte of the PLC.

In case of a communication error between the fieldbus gateway and the safety switch, the switching condition of the safety switch is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Diagnostic failure (waming)

If an failure (warning) is signalled in an answer byte, detailed information can be read out about this failure (warning)

Bit ${ }^{\circ}$.	Request byte	Request byte	Diagnostic Failure waming	Diagnostic Failure
Bit 0:	Magnet in, failure reset	Safety output enabled	Error output Y 1	Error output Y 1
Bit 1:	Latching force bit	Actuator detected	E rror output Y2	Error output Y2
Bit 2:	Latching force bit	Solenoid interlock locked	Cross-wire	Cross-wire
Bit 3:	Latching force bit	---	Magnet temperature too high	Magnet temperature too high
Bit 4:	---	Input condition X1 and X2	Locking blocked or F < 500 N	Actuator error, coding error
Bit 5:	---	---	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gatewayand safety switch	---
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	Operating voltage too low

The described condition is obtained, when bit = 1

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

System condition	LED's			Safety outputsY1, Y2	Response byte Bit ${ }^{\circ}$							
	green	red	yellow		7	6	5	4	3	2	1	0
Safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator present	On	Off	Flashes	24 V	0	0	0	1	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	1	0	1	1	1
Solenoid interlock cannot be locked. S afety guard not correctly closed or magnet soiled	On	Off	Flashes	0 V	0	0	0	1	0	0	0	0
Failure warning ${ }^{1)}$, actuator present	On	Flashes ${ }^{21}$	On	24 V	0	1	0	1	0	X	1	1
Failure	On	Flashes ${ }^{21}$	Off	0 V	1	0	0	X	0	X	X	0

[^5]
Diagnostic of the MZM 120 safety switch with diagnostic output

The operating condition of the solenoid interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. If a failure or failure warning is detected, the red LED will be activated.

If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

Blinkcodes (red)	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y 1	30 min	E rror in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	E rror in output test or voltage at output Y2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	30 min	Cross-wire between the output cables or error at both out- puts. After 30 min., voltage must be switched on/off
5 flash pulses	Actuator (target) error	0 min	Wrong or defective actuator
6 flash pulses	Holding force error	0 min	The required holding force $>300 \mathrm{~N}$ is not obtained (misalignment/soiling).
10 flash pulses	Magnet temperature too high	0 min	The magnet is too hot: $\mathrm{T}>70{ }^{\circ} \mathrm{C}$
Continuous red	Internal failure	0 min	

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC. (refer to table)

The diagnostic output is not a safety-relevant output!

Failure

Failures, which no longer guarantee the proper functioning of the safety switch (internal failures), will result in the deactivation of the safety outputs for as long as the risk persists. Failures, which do not immediately affect the safety function of the safety switch (cross-wire, temperature error, shortcircuit +24 VDC at safety output), will result in a delayed switch-off (refer to table).

After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. When the safety guard is relocked, the safety outputs are enabled.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated

The diagnostic function of the safety switch with additional interlocking function

System condition	Solenoid control IN	LED green	red	yellow	Safety outputs Y1, Y2	Diagnostic output OUT
Safety guard open	0 V	On	Off	Off	0 V	0 V
Safety guard closed, actuator in, door can be locked	0 V	On	Off	Flashes	24 V	24 V
Safety guard closed and locked	24 V	On	Off	On	24 V	24 V
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	24 V	On	Off	Off	0 V	0 V
Failure warning ${ }^{1)}$, actuator in	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Flashes/ On	24 V	0 V
Failure	$0 \mathrm{~V} / 24 \mathrm{~V}$	On	Flashes ${ }^{2)}$	Off	0 V	0 V

[^6]
Diagnostic of the MZM 120 safety switch with serial diagnostic function

Safety switches with serial diagnostic cable have a serial input and output cable instead of the conventional diagnostic output. If safety switches are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Max. 31 safety switches can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the request and response bytes is automatically and permanently written in an input byte of the PLC for each safety switch in the series-wired chain. The request data for each safety switch are transmitted to the component through anoutput byte of the PLC.

In case of a communication error between the fieldbus gateway and the safety switch, the switching condition of the safety switch is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Diagnostic failure (waming)

If an failure (warning) is signalled in an answer byte, detailed information can be read out about this failure (warning)

Bit ${ }^{\circ}$.	Request byte	Request byte	Diagnostic Failure waming	Diagnostic Failure
Bit 0:	Magnet in, failure reset	Safety output enabled	Error output Y 1	E rror output Y 1
Bit 1:	Latching force bit	Actuator detected	Error output Y2	Error output Y2
Bit 2:	Latching force bit	Solenoid interlock locked	Cross-wire	Cross-wire
Bit 3:	Latching force bit	---	Magnet temperature too high	Magnet temperature too high
Bit 4:	---	Input condition X1 and X2	Locking blocked or $\mathrm{F}<300 \mathrm{~N}$	Actuator error, coding error
Bit 5:	---	---	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gatewayand safety switch	---
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	Operating voltage too low

The described condition is obtained, when bit = 1

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

System condition	LED's			Safety outputs	Response byte Bit ${ }^{\circ}$							
	green	red	yellow	Y1, Y2	7	6	5	4	3	2	1	0
Safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator in, door can be locked	On	Off	Flashes	24 V	0	0	0	1	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	1	0	1	1	1
Solenoid interlock cannot be locked. Safety guard not correctly closed or magnet soiled	On	Off	Flashes	0 V	0	0	0	1	0	0	0	0
Failure warning ${ }^{1)}$, actuator in	On	Flashes ${ }^{2)}$	On	24 V	0	1	0	1	0	X	1	1
Failure	On	Flashes ${ }^{2)}$	Off	0 V	1	0	0	X	0	X	X	0

[^7]
Electronic solenoid interlock AZM 200 and safety switch AZ 200 with separate actuator

Classification:

- PL e / category 4
to EN ISO 13849-1
- Up to SIL 3 to IEC 61508
- PFH value: $4,0 \times 10^{-9} / \mathrm{h}$

Actuation advantages

- Integrated door detection sensor
- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- 3 LED's to show the operating status
- Accurate adjustment through slotted holes

Wiring advantages

- 2 short-circuit proof, p-type safety outputs (24 VDC per 250 mA)
- Self-monitored series-wiring of max. 31 sensors in PL e / category 4 to EN ISO 13849-1
- Integral cross-wire, wire breakage and external voltage monitoring of the safety cables up to the control cabinet

Diagnostic advantages

- Detailed status information through LED and diagnostic output
- Optionally serial diagnostic cables for series-wiring
- Increased availability by pre-signalling of failures during machine operation,
e.g. sagging of a safety guard

AZM 200

Solenoid interlock

(Solenoid interlock monitoring)
-Thermoplastic enclosure

- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Intelligent diagnostic
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status (refer to table)
- Manual release
- 2 safety outputs, 1 diagnostic output
- Latching force 30 N
- Available with AS-Interface Safety at Work
- Suitable for applications (without additional second switch)
- up to PL e/category 4 to EN ISO 13849-1
- suitable for SIL 3 applications to IEC 61508
- Series-wiring of max. 31 components, without detriment to the category

Approvals

TUV	(11) ${ }^{\text {us }}$	C
Ordering dergis		
AZM 200(1-T-(2)3		
No.	Option	Description
(1)	SK	Screw terminals
	CC	Cage clamps
	ST1	Connector M23, (8+1)-pole
	ST2	Connector M12, 8-pole
(2)	1P2PW	1 diagnostic output and
		2 safety outputs, all p-type
		and combined diagnostic signal: safety guard closed
		AND solenoid interlock locked
	SD2P	Serial diagnostic output and
		2 safety outputs, p-type
(3)		Power to unlock
	A	Power to lock

Technical data

Standards: IEC/EN 60947-5-1, EN ISO 13849-1,
IEC 61508, IEC 60947-5-3
glass-fibre reinforced thermoplastic, self-extinguishing thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations $F_{\text {max }}$:
Latching force:
2000 N

Protection class:
Protection class:
Overvoltage category:
Degree of pollution:
Connection:

Cable section

Cable entry:

Series-wiring:

Cable length:
Cable voltage drop depending on the output current)

Ambient conditions:

Ambient temperature: Storage and transport temperature:
Relative humidity:
Resistance to vibration:
Resistance to shock:
Switching frequency f:
Response time:
Duration of risk:

$$
\begin{array}{r}
-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C} \\
30 \% \ldots 95 \%,
\end{array}
$$

non-condensing
$10 \ldots 55 \mathrm{~Hz}$,
amplitude 1 mm $30 \mathrm{~g} / 11 \mathrm{~ms}$

1 Hz
$<60 \mathrm{~ms}$
$<120 \mathrm{~ms}$
Time to readiness:
$<4 \mathrm{~s}$
Actuating speed:
$\leq 0.2 \mathrm{~m} / \mathrm{s}$

Electrical data:

$U_{e}: \quad 24$ VDC $-15 \% /+10 \%$
(stabilised PELV)
$\mathrm{I}_{\mathrm{e}}: \quad 1.2 \mathrm{~A}$

$\mathrm{I}_{0}:$	$\max .0 .5 \mathrm{~A}$
$\mathrm{U}_{\mathrm{imp}}:$	800 V

U: 32 VDC
Fuse rating:

- Screw terminals or cage clamps: $\leq 4 \mathrm{~A}$
when used to UL 508;
- Connector M12 or M23
$\leq 2 \mathrm{~A}$

Note

The solenoid interlocks and the actuator unit must be ordered separately!

As long as the actuator unit is inserted in the solenoid interlock, the unlocked safety guard can be relocked. In this case, the safety outputs are re-enabled; opening the safety guard is not required.

Actuators and accessories refer to page 94
Wiring and connectors
refer to page 112

Technical data

Safety inputs X1 and X2:
U ${ }^{\text {e3Low: }}$:
-3 V ... 5 V
$15 \mathrm{~V} . . .30 \mathrm{~V}$
typically 2 mA at 24 V
Safety outputs Y1 and Y2:
p-type, short-circuit proof
0 V up to 4 V under U_{e} max. je 0.25 A

DC-13
Utilisation category:
$\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT:
p-type, short-circuit proof
0 V up to 4 V under U_{e} max. 0.05 A
$\mathrm{U}_{\mathrm{e} 2}$:
DC-13
Utilisation category: max. 50 nF
serial diagnostic:
$-3 \mathrm{~V} . .5 \mathrm{~V}$
$15 \mathrm{~V} . .330 \mathrm{~V}$
typically 10 mA at 24 V ,
dynamically 20 mA
Solenoid:
100% ED

LED functions:

Green
Yellow
Red
Supply voltage on Operating status

Classification:
Standards:
EN ISO 13849-1; IEC 61508
PL:
e
4
Category:
PFH value:
SIL:
$4.0 \times 10^{-9} / \mathrm{h}$
suitable for SIL 3 applications
20 years

Connection

Integrated connectors
M23, (8+1)-pole (Suffix -ST1)

M12, 8-pole
(Suffix -ST2)

AZM 200 B

Safety switch with interlocking function (Actuator monitoring)

-Thermoplastic enclosure

- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Intelligent diagnostic
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status (refer to table)
- Manual release
- 2 safety outputs, 1 diagnostic output
- Latching force 30 N
- Available with AS-Interface Safety at Work
- Suitable for applications
(without additional second switch)
- up to PL e/category 4 to EN ISO 13849-1
- suitable for SIL 3 applications to IEC 61508
- Series-wiring of max. 31 components, without detriment to the category

Approvals

THV :(4)" C

Ordering detrils

AZM 200 B (1)-T-(2)(3)

No.	Option	Description
(1)	SK	Screw terminals CC Cage clamps
(2)	ST1	Connector M23, (8+1)-pole ST2 2 Connector M12, 8-pole Conn 1 diagnostic output and 2 safety outputs, all p-type and combined diagnostic signal: safety guard closed
(3)	SD2P	AND solenoid interlock locked Serial diagnostic output and 2 safety outputs, p-type Power to unlock Power to lock

A Power to lock

Technical data

Standards: IEC/EN 60947-5-1, EN ISO 13849-1,
IEC 61508, IEC 60947-5-3
glass-fibre reinforced
thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations
$\mathrm{F}_{\text {max }}$:
Latching force:
Protection class:
2000 N
30 N
IP67 to EN 60529
Protection class:
Overvoltage category:
Degree of pollution:
Connection:

Cable section:

Cable entry:

Series-wiring:

Cable length:

Cable length and cable section alt voltage drop depending on the output current)

Ambient conditions:

Ambient temperature:

 Storage and transport temperature:Relative humidity:
Resistance to vibration:
Resistance to shock:
Switching frequency f:
Response time:
Duration of risk:

$$
\begin{aligned}
& -25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}
\end{aligned}
$$

30\% ... 95\%,
non-condensing
$10 \ldots 55 \mathrm{~Hz}$,
amplitude 1 mm $30 \mathrm{~g} / 11 \mathrm{~ms}$

1 Hz
$<60 \mathrm{~ms}$
$<120 \mathrm{~ms}$
Time to readiness:
$<4 \mathrm{~s}$
Actuating speed:
$\leq 0.2 \mathrm{~m} / \mathrm{s}$

Electrical data:

$U_{e}: \quad 24$ VDC $-15 \% /+10 \%$
(stabilised PELV)
$\mathrm{I}_{\mathrm{e}}: \quad 1.2 \mathrm{~A}$
$\begin{array}{lr}\mathrm{I}_{0}: & \max .0 .5 \mathrm{~A} \\ \mathrm{U}_{\text {imp }}: & 800 \mathrm{~V}\end{array}$
$\mathrm{U}_{\mathrm{i}}: \quad 32$ VDC
Fuse rating:

- Screw terminals or cage clamps: $\leq 4 \mathrm{~A}$
when used to UL 508;
- Connector M12 or M23:
$\leq 2 \mathrm{~A}$

Technical data

Safety inputs X1 and X2:
U3/Low:
$-3 \vee \ldots 5 \vee$
$15 \mathrm{~V} . . .30 \mathrm{~V}$
typically 2 mA at 24 V
Safety outputs Y1 and Y2:
p-type, short-circuit proof
0 V up to 4 V under U_{e} max. je 0.25 A

DC-13
Utilisation category:
$\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT:
p-type, short-circuit proof
0 V up to 4 V under U_{e} max. 0.05 A
$\mathrm{U}_{\mathrm{e} 2}$:
DC-13
Utilisation category: $\max .50 \mathrm{nF}$
serial diagnostic: max. 50 nF
Solenoid control IN:
$U_{\text {e4/Low }}$:
$\mathrm{I}_{\mathrm{e} 4}$:
Solenoid:

LED functions:

G reen
Y ellow
Red
Classification:
Standards:
PL:
Category:
PFH value:
SIL:
Mission time:
$-3 \mathrm{~V} . .5 \mathrm{~V}$
$15 \mathrm{~V} . . .30 \mathrm{~V}$
typically 10 mA at 24 V ,
dynamically 20 mA
100% ED
Supply voltage on Operating status
Error (refer to flash codes)

EN ISO 13849-1; IEC 61508
e
4
$4.0 \times 10^{-9} / \mathrm{h}$
suitable for SIL 3 applications
20 years

Note

The safety switch with interlocking function and the actuator must be ordered separately!

Actuators and accessories refer to page 94

Wiring and connectors
refer to page 112

Connection

Integrated connectors

M23, (8+1)-pole (Suffix-ST1)

M12, 8-pole
(Suffix-ST2)

Electronic solenoid interlock and safety switch AZIAZM 200

AZM 200...-2568

Solenoid interlock with button and LED
(Solenoid interlock monitoring)

- Thermoplastic enclosure
- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Intelligent diagnostic
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status (refer to table)
- Manual release
- 2 safety outputs, 1 diagnostic output
- Latching force 30 N
- Connector M23, 12-pole
- Suitable for applications (without additional second switch)
- up to PL e/category 4 to EN ISO 13849-1
- suitable for SIL 3 applications to IEC 61508
- Series-wiring of max. 31 components without detriment to the category

Approvals

TUV ©(L)
Ordering details

AZM 200ST-T-1P2PW-(1-2568
No.
Option

| (1) | Description |
| :--- | :--- | :--- |

Technical data

Standards:

Enclosure:

IEC/EN 60947-5-1, EN ISO 13849-1, EC 61508, IEC 60947-5-3
 glass-fibre reinforced thermoplastic, self-extinguishing
 ≥ 1 million operations
 2000 N

Mechanical life:
$F_{\text {max }}$:
Latching force:
Protection class:

- Button:
- LED:

Protection class:
Overvoltage category:
Degree of pollution:
Connection:

Series-wiring:

Cable length:
IP65 to EN IP65, 24 VDC
IP65, white, 24 VDC
II, 回
connector M23, 12-pole max. 31 components
(Cable length and cable section alter the voltage drop depending on the output current) Ambient conditions:
Ambient temperature:

- Power to unlock
- Power to lock

Storage and transport temperature:
Relative humidity:
Resistance to vibration:

Resistance to shock:
Switching frequency f:
Response time:
Duration of risk:
Time to readiness:
Actuating speed:
Electrical data:
U_{e} :

Fuse rating
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ 30\% ... 95\%, non-condensing $10 \ldots 55 \mathrm{~Hz}$, amplitude 1 mm $30 \mathrm{~g} / 11 \mathrm{~ms}$ 1 Hz
$<60 \mathrm{~ms}$
$<120 \mathrm{~ms}$
$<4 \mathrm{~s}$ $\leq 0.2 \mathrm{~m} / \mathrm{s}$

24 VDC -15\% / +10\%
(stabilised PELV)
1.2 A
$\max .0 .5 \mathrm{~A}$
800 V
32 VDC $\leq 4 \mathrm{~A}$

Technical data

Safety inputs X1 and X2:

$\mathrm{U}_{\text {eзL. }}$:	$-3 \mathrm{~V} \ldots 5 \mathrm{~V}$
$\mathrm{U}_{\text {eзнigh: }}$	$15 \mathrm{~V} \ldots 30 \mathrm{~V}$
$\mathrm{I}_{\text {e3 }}:$	$>2 \mathrm{~mA}$ at 24 V

Safety outputs Y1 and Y2:
p-type, short-circuit proof
0 V up to 4 V under U_{e} max. je 0.25 A

DC-13
Utilisation category:
$\leq 0.5 \mathrm{~mA}$
Diagnostic output OUT:
p-type, short-circuit proof
$\mathrm{U}_{\text {e2 }}: \quad 0 \mathrm{~V}$ up to 4 V under U_{e}
$\mathrm{I}_{\mathrm{e} 2}$: max. 0.05 A
Utilisation category:
DC-13
Wiring capacitance for
serial diagnostic
max. 50 nF
Solenoid control IN:
$\mathrm{U}_{\text {e4/Low: }}$:
$-3 \mathrm{~V} \ldots 5 \mathrm{~V}$
$\mathrm{U}_{\text {e4//igh }}$:

Solenoid:
LED functions:
Green
Supply voltage on
Yellow
Operating status
Classification
Standards:
EN ISO 13849-1; IEC 61508
PL:
e
4
Category: $\quad 4$
PFH value: $\quad 4.0 \times 10^{-9} / \mathrm{h}$
suitable for SIL 3 application
Mission time:
20 years

Note

The solenoid interlocks and the actuator unit must be ordered separately!

As long as the actuator unit is inserted in the solenoid interlock, the unlocked safety guard can be relocked. In this case, the safety outputs are re-enabled; opening the safety guard is not required.

Actuators and accessories refer to page 94

Wiring and connectors
refer to page 112

Ordering details

Connection

M23, 12-pole

Accessories:
Connector plug M23, 12-pole, 5 m 101208520

Safety monitoring module

Interlocks with power to lock principle may only be used in special cases after a thorough evaluation of the accident risk, since the guarding device can immediately be opened on failure of the electrical power supply or when the main switch is opened.

Diagnostic

Depending on the component variant, the following diagnostic signals are transmitted:

1P2PW-Variant

OUT Combined diagnostic signal: safety guard closed and solenoid interlock locked

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.

The diagnostic output is not a safety-relevant output!

Serial diagnostic

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUS-
Gateway SD-I-DPV0-2 and the UniversalGateway SD-I-U-... . and in the instructions for the integration of the SD-Gateway.

Note

For manual release the triangular key is included in delivery.

Electronic solenoid interlock and safety switch AZIAZM 200
Series-wiring of the AZM 200 (B) with conventional diagnostic output

Y1 and Y2 $=$ Safety outputs \rightarrow Safety controller
The voltage is supplied to both safety inputs of the last safety switchgear of the chain (considered from the safety-monitoring module). The safety outputs of the first safety switchgear are connected to the safety-monitoring module.

Series-wiring of the AZM 200 (B) with serial diagnostic function

[^8]Humanity first and foremost Safety Consulting

Diagnostic of the AZM 200 (B) solenoid interlock with diagnostic output

The operating condition of the solenoid interlock as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

Flash codes (red)	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y1	30 min	E rror in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	Error in output test or voltage at output 2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	30 min	Cross-wire between the output cables or error at both outputs
4 flash pulses	Failure (warning) ambient temperature too high	30 min	Temperature measurement indicates too high an inner temperature
5 flash pulses	Error target	0 min	Wrong or defective actuator
6 flash pulses	E rror target combination	0 min	An invalid combination of targets was detected (Latch breakage or tampering attempt)
Continuous red	Internal failure	0 min	

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!
Depending on the component variant, the following diagnostic signals are transmitted:
OUT Combined diagnostic signal:safety guard closed and solenoid interlock locked

Failure

Failures, which no longer guarantee the proper functioning of the AZM 200 solenoid interlock (internal failures), will result in a deactivation of the safety outputs. Failures, which do not immediately affect the safety function of the AZM 200 solenoid interlock (cross-wire, temperature error, short-circuit +24 VDC at safety output), will result in a delayed switch-off (see table). After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. The safety outputs are enabled and allow a restart of the machine.
A locking chain must be permanently locked to enable the restart.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset in the slave when the failure cause is eliminated

System condition	Solenoid control IN		LED			Safety outputs Y1, Y2		Diagnostic output OUT
	Power-to-unlock	Power-to-lock	green	red	yellow	AZM 200...	AZM 200 B...	
Safety guard open	24 V (0 V)	$0 \mathrm{~V}(24 \mathrm{~V})$	On	Off	Off	0 V	0 V	0 V
Safety guard closed, actuator not inserted	24 V	0 V	On	Off	Off	0 V	0 V	0 V
Safety guard closed, actuator inserted, not locked	24 V	0 V	On	Off	Flashes	0 V	24 V	24 V
Safety guard closed, actuator inserted, locking impossible	0 V	24 V	On	Off	Flashes	0 V	24 V	0 V
Safety guard closed, actuator inserted and locked	0 V	24 V	On	Off	On	24 V	24 V	24 V
Failure warning ${ }^{11}$, Solenoid interlock locked	0 V	24 V	On	Flashes ${ }^{2)}$	On	$24 \mathrm{~V}^{1)}$	$24 \mathrm{~V}^{1)}$	0 V
Failure	$0 \mathrm{~V}(24 \mathrm{~V})$	24 V (0 V)	On	Flashes ${ }^{2)}$	Off	0 V	0 V	0 V

[^9]
Diagnostic of the AZM 200 (B) solenoid interlock with serial diagnostic function

Solenoid interlocks with serial diagnostic function have a serial input and output cable instead of the conventional diagnostic output. If solenoid interlocks are daisy-chained, the diagnostic input an output data are transmitted through this series-wiring.

Max. 31 solenoid interlocks can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the response and diagnostic data is automatically and permanently written in an input byte of the PLC for each solenoid interlock in the series-wired chain. The request data for each solenoid interlock are transmitted to the component through an output byte of the PLC.

In case of a communication error between the fieldbus gateway and the solenoid interlock, the switching condition of the solenoid interlock is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Diagnostic failure (waming)

If an failure (warning) is signalled in an answer byte, detailed information can be read out about this failure (warning).

Bit ${ }^{\text { }}$	Request byte	Response byte	Diagnostic Failure waming	Diagnostic Failure
Bit 0:	Magnet in, independent of power-to-lock or power-tounlock principle	Safety output enabled	Error output Y 1	Error output Y 1
Bit 1:	---	Actuator detected	E rror output Y2	Error output Y2
Bit 2:	---	Actuator detected and locked	Cross-wire	Cross-wire
Bit 3:	---	---	Ambient temperature too high	Ambient temperature too high
Bit 4:	---	Input condition X1 and X2	---	Wrong or defective actuator
Bit 5:	---	Safety guard detected	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gateway and solenoid interlock	---
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	---

The described condition is obtained, when bit $=1$

Functional example of the diagnostic LED's, the serial status signals and the safety outputs

System condition	LED`s green	red	yellow	Safety outputs Y1, Y2	Response byte Bit n°.							
					7	6	5	4	3	2	1	0
Supply voltage on, safety guard open	On	Off	Off	0 V	0	0	0	X	0	0	0	0
Safety guard closed, actuator present	On	Off	Flashes	0 V	0	0	0	X	0	0	1	0
Safety guard closed and locked	On	Off	On	24 V	0	0	0	1	0	1	1	1
Failure warning ${ }^{1)}$, safety guard locked	On	Flashes	On	24 V	0	1	0	1	0	1	1	1
Failure	On	Flashes	Off	OV	1	0	0	X	0	X	X	0

[^10]
AZM 200 D

Solenoid interlock with
two dual-channel enabling paths

- 2 safety outputs for door closed,

2 safety outputs for door locked

- 1 diagnostic output
- Optionally with potential-free button and LED
- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and interlock
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status
- Manual release
- Holding force 2000 N
- Latching force 30 N
- Suitable for applications
(without additional second switch)
Safety guard monitoring
- PL e/category 4 to EN ISO 13849-1
- suitable for SIL 3 applications to IEC 61508

Guard lock monitoring

- PL d/category 3 to EN ISO 13849-1
- suitable for SIL 2 applications to IEC 61508

Technical data

Standards: IEC/EN 60947-5-1, EN ISO 13849-1,
thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations
$\mathrm{F}_{\text {max }}$:
Latching force:

Response time:
Duration of risk:
Time to readiness:
Actuating speed:
Protection class:

- Button:
- LED:

Protection class:
Overvoltage category:
Degree of pollution:
Connection:
1P67 to EN 60529
IP65, 24 VDC
IP65, white, 24 VDC

Cable section:

Cable entry:
Cable length:
$<60 \mathrm{~ms}$
$<120 \mathrm{~ms}$
$<4 \mathrm{~s}$
$\leq 0,2 \mathrm{~m} / \mathrm{s}$
II, 回
screw terminals
or cage clamps or connector M12 or M23 $\min .0 .25 \mathrm{~mm}^{2}$ max. $1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

M20
max. 200m
(Cable length and cable section alter the voltage drop depending on the output current)

Switching distances to IEC 60947-5-3:

Assured switching distance s_{ao} : $\quad 14 \mathrm{~mm}$ Assured switch-off distance sari 22 mm Switching frequency f: $\quad 1 \mathrm{~Hz}$

Ambient conditions:

Ambient temperature:
Storage and transport
temperature:
Relative humidity:
30\% ... 95\%,

Resistance to vibration:
Resistance to shock:
Electrical data:
$U_{e}: \quad 24$ VDC $-15 \% /+10 \%$
(stabilised PELV)
$\mathrm{I}_{\mathrm{e}}: \quad 1,2 \mathrm{~A}$
Required rated short-circuit current: 100 A

$$
\begin{aligned}
& -25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} \\
& -25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}
\end{aligned}
$$

non-condensing
$10 . . .55 \mathrm{~Hz}$,
amplitude 1 mm
$30 \mathrm{~g} / 11 \mathrm{~ms}$

IEC 61508, IEC 60947-5-3
glass-fibre reinforced

2000 N
30 N

Technical data

10 :	max. 0,5 A
$\mathrm{U}_{\mathrm{imp}}$:	0,8 kV
U_{i} :	32 VDC
Fuse rating:	
- Screw terminals or cage clamps when us	cage clamps: $\leq 4 \mathrm{~A}$ bei when used to UL 508;
- Connector M12 or M23:	23: $\leq 2 \mathrm{~A}$
Safety inputs X1 and X2:	
- Ue3/Low:	-3 V ... 5 V
- U e3/High:	15 V ... 30 V
	typically 2 mA at 24 V
Safety outputs Y1 ... Y4:	
	p-type, short-circuit proof
$\mathrm{U}_{\mathrm{e} 1}: \quad 0 \mathrm{~V}$ up to	0 V up to 4 V under $\mathrm{U}_{\text {e }}$
$\mathrm{l}_{\text {e1 }}$:	
- Y1 and Y 2: max.	max. per 0,25 A
- Y 3 and Y4:	max. 0,1 A*
Utilisation category:	DC-13
$I_{\text {r }}$:	$\leq 0,5 \mathrm{~mA}$
Diagnostic output OUT:	
	p-type, short-circuit proof
$\mathrm{U}_{\mathrm{e} 2}: \quad 0 \mathrm{~V}$ up to	0 V up to 4 V under $\mathrm{U}_{\text {e }}$
$\mathrm{I}_{\mathrm{e} 2}$:	max. 0,1 A*
Utilisation category:	DC-13
* Residual current through	rrough

outputs Y3, Y4, OUT: $\quad I_{Y 3}+I_{Y 4}+I_{\text {OUT }} \leq 0,1 \mathrm{~A}$
Solenoid control IN:
$\begin{array}{lr}-U_{\text {e4/Low: }} & -3 \mathrm{~V} \ldots 5 \mathrm{~V} \\ -\mathrm{U}_{\text {e4/High: }} & 15 \mathrm{~V} \ldots 30 \mathrm{~V}\end{array}$
e4nion

Solenoid
typically 10 mA at 24 V , dynamically 20 mA 100\% ED

Supply voltage on Operating status

Approvals

TUV	(41) ${ }^{\text {vs }}$	
Ordering derals		
AZM 200 D (1)-T-1P2P2P-(2)		
No.	Option	Description
(1)	SK	Screw terminals
	CC	Cage clamps
	ST1	Connector M23, $(8+1)$-pole
	ST2	Connector M12, 8-pole
	ST3	Connector M23, 12-pole only for -2568
(2)		Power to unlock
	A	Power to lock
(3)		Without
	2568	With button and LED, only for ST3

Note

As long as the actuator unit is inserted in the solenoid interlock, the unlocked safety guard can be relocked. In this case, the safety outputs are re-enabled; opening the safety guard is not required.

The solenoid interlocks and the actuator unit must be ordered separately!

Actuators and accessories refer to page 94

Wiring and connectors
refer to page 112

Connection

Integrated connectors
M23, (8+1)-pole (Suffix -ST1)

M12, 8-pole
(Suffix -ST2)

Technical data

Classification:
 Safety guard monitoring

Standards: EN ISO 13849-1; IEC 61508
PL:
Category:
PFH value:
SIL:
Mission time:

Guard lock monitoring

Standards: EN ISO 13849-1; IEC 61508
PL:
Category:
PFH value:
SIL:
Mission time:
suitable for SIL 2 applications 20 years

Note

Enabling path 1 is represented by the safety outputs Y1/Y2 of the AZM 200 D.
It switches when the actuator is detected for applications up to PL e / control category 4.

Enabling path 2 (Y3/Y4) enables both outputs, when the actuator is detected AND the locking target is detected AND the locking condition is detected.

Connection

Integrated connectors
M23, 12-pole
(Suffix -ST3)
only for -2568

Accessories:

Connector plug M23, 12-pole, 5 m 101208520

Note

Interlocks with power to lock principle may only be used in special cases after a thorough evaluation of the accident risk, since the guarding device can immediately be opened on failure of the electrical power supply or when the main switch is opened.

Diagnostic function of the AZM 200 D

The operating condition of the safety switch as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.
If a failure or failure warning is detected, the red LED will flash

Blinkcodes (red)	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y1	30 min	E rror in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	E rror in output test or voltage at output Y2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	30 min	Cross-wire between the output cables or error at both outputs
4 flash pulses	Failure (warning) ambient temperature too high	30 min	Temperature measurement indicates too high an inner temperature
5 flash pulses	Error target	0 min	Wrong or defective actuator
6 flash pulses	Error target combination	0 min	An invalid combination of targets was detected (Latch breakage or tampering attempt)
Continuous red	Internal failure	0 min	

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!
Depending on the component variant, the following diagnostic signals are transmitted:
OUT Combined diagnostic signal:safety guard closed and solenoid interlock locked

Failure

Failures, which no longer guarantee the proper functioning of the AZM 200 solenoid interlock (internal failures), will result in a deactivation of the safety outputs. Failures, which do not immediately affect the safety function of the AZM 200 solenoid interlock (cross-wire, tem perature error, shortcircuit +24 VDC at safety output), will result in a delayed switch-off (see table). After elimina tion of the failure, the failure message is reset by opening and closing the relevant safety guard. The safety outputs are enabled and allow a restart of the machine. A locking chain must be permanently locked to enable the restart.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset in the slave when the failure cause is eliminated.

System condition	Solenoid control IN		LED green	red	yellow	Safety outputs				Diagnostic output OUT
	Power-to-unlock	Power-to-lock				Y1	Y2	Y3	Y4	
Safety guard open	24 V (0 V)	0 V (24 V)	On	Off	Off	0 V	0 V	0 V	24 V	0 V
Safety guard closed, actuator not inserted	24 V	0 V	On	Off	$\begin{aligned} & \text { Flashes } \\ & 3 \mathrm{~Hz} \end{aligned}$	24 V	24 V	0 V	24 V	0 V
Safety guard closed, actuator inserted, not locked	24 V	0 V	On	Off	Flashes	24 V	24 V	0 V	24 V	24 V
Safety guard closed, actuator inserted, locking impossible	0 V	24 V	On	Off	Flashes	24 V	24 V	0 V	24 V	24 V
Safety guard closed, actuator inserted and locked	0 V	24 V	On	Off	On	24 V	24 V	24 V	0 V	24 V
Failure warning ${ }^{11}$, Solenoid interlock locked	0 V	24 V	On	Flashes ${ }^{2)}$	On	$\begin{gathered} 24 \\ \mathrm{~V}^{1)} \end{gathered}$	$\begin{gathered} 24 \\ V^{1)} \end{gathered}$	24 V	0 V	0 V
Failure	$0 \mathrm{~V}(24 \mathrm{~V})$	24 V (0 V)	On	Flashes ${ }^{2)}$	Off	0 V	0 V	24 V	0 V	0 V

[^11]${ }^{2)}$ refer to flash codes

Up-to-date without fail. The online product catalogue

AZ 200

Safety switch

-Thermoplastic enclosure

- Sensor technology permits an offset of $\pm 5 \mathrm{~mm}$ between actuator and safety switch - Intelligent diagnostic
- Accurate adjustment through slotted holes
- 3 LED's to show the operating status (refer to table)
- 2 safety outputs, 1 diagnostic output
- Holding force 30 N
- Available with AS-Interface Safety at Work

- Suitable for applications

(without additional second switch)

- up to PL e/category 4 to EN ISO 13849-1
- suitable for SIL 3 applications to IEC 61508
- Series-wiring of max. 31 components, without detriment to the category

Technical data

Standards: EN 60947-5-3, EN ISO 13849-1, IEC 61508
Enclosure: glass-fibre reinforced thermoplastic, self-extinguishing
Mechanical life: $\quad \geq 1$ million operations
Holding force:
Protection class:
Protection class:
IP67 to EN 60529

Overvoltage category:
Degree of pollution:
Connection:

Cable section:

Cable entry:

Series-wiring:

Cable length:

Cable length and cable section alter the
voltage drop depending on the output current)
Switching distances to EN 60947-5-3:
S_{n} :
S_{ao} :
Sar:
Hysteresis:
Repeat accuracy:
Switching frequency f:

Ambient conditions:

Ambient temperature:
Storage and transport
temperature:
Relative humidity:
Resistance to vibration:

Resistance to shock:
S witching frequency f:
Response time:
Duration of risk:
.5 mm
4.0 mm

30 mm
max. 1.5 mm
$<0.5 \mathrm{~mm}$

1 Hz

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+85{ }^{\circ} \mathrm{C}$
30\% ... 95\%,
non-condensing
10 ... 55 Hz ,
amplitude 1 mm
$30 \mathrm{~g} / 11 \mathrm{~ms}$
1 Hz
$<60 \mathrm{~ms}$
$<120 \mathrm{~ms}$
$<4 \mathrm{~s}$
Time to readiness:
$\leq 0.2 \mathrm{~m} / \mathrm{s}$

Technical data

Ledinctions:

Yellow
Red

PL:
e
Category: $\quad 4.0 \times 10^{-9} / \mathrm{h}$
PFH value:
SIL: \quad suitable for SIL 3 applications
20 years

Approvals

Note

The safety switch and theactuator unit must be ordered separately!

Actuators and accessories refer to page 94

Wiring and connectors
refer to page 112

Connector

Integrated connector
M23, (8+1)-pole (Suffix -ST1)

M12, 8-pole
(Suffix -ST2)

Diagnostic

Operating principle of the diagnostic output The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.

The diagnostic output is not a safety-relevant output!

Serial diagnostic

Detailed information about the use of the serial diagnostics can be found in the operating instructions of the PROFIBUSGateway SD-I-DPV0-2 and the UniversalGateway SD-I-U-.... and in the instructions for the integration of the SD-Gateway.

Note

The wiring examples of the AZ 200 are identical to those of the AZM 200 series (refer to page 82) Derogation: IN not assigned in the version with conventional diagnostic output.

Diagnostic of AZ 200 safety switch with diagnostic output

The operating condition of the safety switch as well as possible failures and faults are signalled by means of three-colour LED's, installed to the front of the device.

The green LED indicates that the safety sensor is ready for operation. The supply voltage is on. If the actuator is near the limit of the sensor's switching distance, the yellow LED will flash. The flashing can be used to prematurely detect variations in the clearance between the sensor and the actuator (e.g. sagging of a safety guard). The sensor must be adjusted before the distance to the actuator increases and before the safety outputs are disabled, thus stopping the machine. If an error is detected, the red LED will be activated.

Flash codes	Meaning	Autonomous switch-off after	Cause
1 flash pulse	Failure (warning) output Y1	30 min	Error in output test or voltage at output Y1 although the output is switched off
2 flash pulses	Failure (warning) output Y2	30 min	Error in output test or voltage at output Y2 although the output is switched off
3 flash pulses	Failure (warning) cross-wire	Failure (warning) ambient temperature too high	30 min
4 flash pulses	Cross-wire between the output cables or error at both outputs		
5 flash pulses	Temperature measurement indicates too high an inner temperature		
6 flash pulses	Error target combination	0 min	Wrong or defective actuator
Continuous red	Internal failure	0 min	An invalid combination of targets was detected (Latch breakage or tampering attempt)

Operating principle of the diagnostic output

The short-circuit proof diagnostic output OUT can be used for central indicating or control functions, for instance in a PLC.
The diagnostic output is not a safety-relevant output!
Depending on the component variant, the following diagnostic signals are transmitted:
OUT Safety guard closed, actuator inserted and no failure detected

Failure

Failures, which no longer guarantee the proper functioning of the AZ 200 safety switch (internal failures), will result in an immediate deactivation of the safety outputs. Failures, which do not immediately affect the safety function of the AZ 200 safety switch (cross-wire, temperature error, shortcircuit +24 VDC at safety output), will result in a delayed switch-off (refer to table). After elimination of the failure, the failure message is reset by opening and closing the relevant safety guard. The safety outputs are enabled and allow a restart of the machine.

Failure warning

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

The diagnostic function of the AZ $\mathbf{2 0 0}$ safety switch

System condition	LED green	red	yellow	Safety outputs Y1, Y2	Diagnostic output OUT
Safety guard open	On	Off	Off	0 V	0 V
Safety guard closed, actuator not inserted	On	Off	Off	0 V	0 V
Safety guard closed, actuator inserted	On	Off	On	$\begin{gathered} 24 \mathrm{~V} \\ \text { (when } \mathrm{X} 1=\mathrm{X} 2=24 \mathrm{~V} \text {) } \end{gathered}$	24 V
Failure warning ${ }^{11}$, actuator inserted, switch-off approaching	On	Flashes ${ }^{2)}$	On	$\begin{gathered} 24 \mathrm{~V} \\ \text { (when } \mathrm{X} 1=\mathrm{X} 2=24 \mathrm{~V} \text {) } \end{gathered}$	0 V
Failure	On	Flashes	aus	0 V	0 V

[^12]${ }^{2)}$ refer to flash codes

Diagnostic of the AZ 200 safety switch with serial diagnostic function

Safety switch with serial diagnostic function

Safety switches with serial diagnostic function have a serial input and output cable instead of the conventional diagnostic output. If safety switches are daisy-chained (i.e. wired in series), the diagnostic input an output data are transmitted through this series-wiring.

Max. 31 safety switches can be wired in series. For the evaluation of the serial diagnostic cable, either the PROFIBUS-Gateway SD-I-DP-V0-2 or the Universal Gateway SD-I-U-... are used. This serial diagnostic interface is integrated as slave in an existing field bus system. In this way, the diagnostic signals can be evaluated by means of a PLC.

The operational information of the response data and the diagnostic data is automatically and permanently written in an input byte of the PLC for each safety switch in the series-wired chain. The request data for each safety switch are transmitted to the component through an output byte of the PLC.

In case of a communication error between the fieldbus gateway and the safety switch, the switching condition of the safety switch is maintained.

Failure

A failure has occurred, which resulted in the immediate deactivation of the safety outputs. The failure is reset when the failure cause is eliminated and bit 7 of the request byte changes from 1 to 0 or when the safety guard is opened.
Failures at the safety outputs will only be deleted upon the next release, as the neutralisation of the failure cannot be detected earlier.

Failure waming

A failure has occurred, which will disable the safety outputs after 30 minutes. The safety outputs initially remain enabled in order to enable a controlled shutdown of the process and set the machine safely to a hold position. A failure warning is reset when the failure cause is eliminated.

Diagnostic failure (waming)

If an failure (warning) is signalled in an answer byte, detailed information can be read out about this failure (warning)

Bit ${ }^{\circ}$	Request byte	Response byte	Diagnostic Failure waming	Diagnostic Failure
Bit 0:	---	Safety output enabled	Error output Y 1	Error output Y 1
Bit 1:	---	Actuator detected	Error output Y2	Error output Y2
Bit 2:	---	---	Cross-wire	Cross-wire
Bit 3:	---	---	Ambient temperature too high	Ambient temperature too high
Bit 4:	---	Input condition X1 and X2	---	Target error, coding error or false target combination
Bit 5:	--	Safety guard detected	Internal failure	Internal failure
Bit 6:	---	Failure warning	Communication error between fieldbus gateway and safety switch	---
Bit 7:	Failure reset	Failure (enabling path switched off)	Operating voltage too low	---

The described condition is obtained, when bit $=1$

AZ/AZM 200-B1-...

- Actuator for sliding guards

- Actuator with return spring
- Tolerates overtravel of up to max. 5 mm
- With door detection sensor T
- Available with or without emergency exit (PO)

Approvals

TVV

Approvals only in combination with switches AZ/AZM 200

Ordering detrils

AZ/AZM 200-B1-(1)T(2)
No. | Option
Description

(1)	L
(2)	R
	PO

Actuating direction left Actuating direction right Without emergency exit With emergency exit

Technical data

Material:

B1-housing
Actuator:

Mechanical life:
$F_{\max }$ AZM 200:
Grivory
zinc die-cast
≥ 1 million operations
2000 N

System components

Lockout tag SZ 200

Ordering details

The safety switches/solenoid interlocks and the actuator unit must be ordered separately!

Actuator B1 with emergency exit AZ/AZM 200-B1-..-P0

Lockout tag Lockout tag SZ 200-1

AZ/AZM 200-B30-...

- Actuator for hinged guards

- One-hand emergency exit, even in de-energised condition
- With door detection sensor T
- Easy and intuitive operation
- NO risk of injury from protruding actuator
- No supplementary door handles required
- Does not protrude into the door opening
- Various handles available
- Can be fitted with or without emergency exit

Approvals

TUV

Approvals only in combination with switches AZ/AZM 200

Ordering detrils

AZ/AZM 200-B30-(1)TA(2)(3)-4)
No. | Option | Description
(1)
R
G1
G2
P1
P20
P25

SZ

Door hinge on left-hand side
Door hinge on right-hand side
With door handle
With rotary button
With emergency exit
With emergency exit metal
With emergency exit with inset handle
W ithout lockout tag
With lockout tag

Technical data

Material:

Actuator unit B30:
glass-fibre reinforced thermoplastic, selfextinguishing, fixing holes with metal washer

Emergency exit P1
glass-fibre reinforced thermoplastic, selfextinguishing, fixing holes with metal washer

Door handle G1, G2:
plastic coated aluminium

Panic handle P1, P20, P25:
plastic coated aluminium
Actuator:
zinc die-cast

Mechanical life:	≥ 1 million operations
$F_{\max }$ AZM 200:	2000 N

2000 N

Emergency exit metal

Orolering details

Actuator with rotary button AZ/AZM 200-...-G2
Emergency exit metal with inset handle

AZ/AZM 200-...-P20
AZIAZM 200-..-P25

Actuator B30 with

lockout tag SZ

AZ/AZM 200-B40-...

- Actuator for hinged and movable safety guards, especially for hinged doors with overlapping hinge
- One-hand emergency exit, even in de-energised condition
- With door detection sensor T
- Easy and intuitive operation
- NO risk of injury from protruding actuator
- No supplementary door handles required
- Does not protrude into the door opening
- Various handles available
- Can be fitted with or without emergency exit

Approvals

TUV

Approvals only in combination with switches AZ/AZM 200

Ordering detrils

AZ/AZM 200-B40-(1)TA(2)(3)
No. | Option | Description
(1)
L
R
(2) G1 G2
(3) P 1 P20 P25

Door hinge on left-hand side
Door hinge on right-hand side
With door handle
With rotary button
With emergency exit With emergency exit metal With emergency exit with inset handle

Technical data

Material:

Actuator unit B40:
glass-fibre reinforced thermoplastic, selfextinguishing, fixing holes with metal washer

Emergency exit P1:
glass-fibre reinforced thermoplastic, selfextinguishing, fixing holes with metal washer

Door handle G1, G2:
plastic coated aluminium
Panic handle P1, P20, P25:
plastic coated aluminium
Actuator:
zinc die-cast
$\begin{array}{lr}\text { Mechanical life: } \quad \geq 1 \text { million operations } \\ F_{\max } \text { AZM 200: } & 2000 \mathrm{~N}\end{array}$
System components

Lockout tag SZ 200-1

Ordering details

Actuator with rotary button AZ/AZM 200-...-G2
Emergency exit metal
AZ/AZM 200-...-P20

Note

The safety switches/solenoid interlocks and the actuator unit must be ordered separately!

AZ/AZM 200-...-P25

SZ 200-1
with inset handle

Lockout tag

AZ/AZM 200-B30-...-P30/P31

- Actuator for hinged and sliding guards, especially for double-leaf doors
- Three-point locking bar for applications with higher mechanical stability requirements (7,000 N)
- Door height max. 230 cm
- One-hand emergency exit,
even in de-energised condition
- With door detection sensor T
- Easy and intuitive operation
- NO risk of injury from protruding actuator
- No supplementary door handles required
- Does not protrude into the door opening
- Various handles available
- Can be fitted with or without emergency exit

Approvals

Ordering details

AZ/AZM 200-B30-(1)-(2)TA(3)-4)
No. | Option | Description

(1)	L	Door hinge on left-hand side
(2)	R G1	Door hinge on right-hand side
(3)	Gith door handle	
(4)	P30	With rotary button Without emergency exit
	With emergency exit	
Without lockout tag		

Technical data

Material:

Actuator unit B30:
glass-fibre reinforced thermoplastic, selfextinguishing, fixing holes with metal washer

Locking bar:
zinc-plated metal

Emergency exit:
metal

Door handle G1, G2:
plastic coated aluminium
Panic handle:
plastic coated aluminium
Actuator:
zinc die-cast

$$
\begin{array}{lr}
\text { Mechanical life: } & \geq 1 \text { million operations } \\
F_{\max } \text { AZM 200: } & 2000 \mathrm{~N}
\end{array}
$$

System components

Oroering detrils

Actuator with rotary button AZ/AZM 200-...-G2
Lockout tag

Actuator B30 with lockout tag SZ

AZ/AZM 200-B30-.-SZ

Up-to-date without fail.
 Online on the worldwide web

Accessories

Control panels

Each safety guard of a machine or plant must be equipped with a safety switching system as well as a control panel, by means of which the operator can initiate functions such as emergency stop, start/stop and reset. The Schmersal Group felt a need for standardisation in this field and has developed a modular system of control panels, which can be configured in accordance with the user's wishes. The system is flexible and has been designed in accordance with the ergonomics principles.

BDF 100 ...-NH

- Yellow enclosure cover

- Slim, shock-resistant plastic enclosure
- Can be fitted onto customary aluminium profile systems
- Can be installed in the most favourable ergonomic position
- Emergency stop function
with or without protective collar
- Two-layer plastic identification labels can be used (engravements on request)

BDF 100

- Black enclosure cover
- Comprehensive selection of illuminated pushbuttons, selector switches, signalling devices with LED and key-operated switches
- Start/stopp and reset functions available

Approvals

:(1)" C

Ordering details
BDF 100-(1)-G-ST with emergency stop
No. | Option | Description

(1) \begin{tabular}{l|l|l}

NH \& | Emergency stop |
| :--- |
| latching pushbutton |
| without protective collar |
| with protective collar |

\end{tabular}

Approvals

Ordering detrils
BDF 100-(1)-(2)-(3)-ST
No. Option
Description

(1)	20	2 NO contacts
(2)	11	1 NO contact / I NC contact
(3)		Selection of the actuator
	G/RD	without indicator lamp
	Red indicator lamp *	
G/GN	Green indicator lamp *	
G/YE	Yellow indicator lamp *	
G/BU	Blue indicator lamp *	
	G/WH	White indicator lamp *

* not for -LT, -LM

Technical data

Standards: \quad EN 60947-5-1,

EN 60947-5-5

Enclosure:

Enclosure material:
glass-fibre reinforced thermoplastic
self-extinguishing
Enclosure protection class:
IP65
Connection: connector M12,8-pole

Ambient conditions:

Ambient temperature:
Climatic resistance:
$-25^{\circ} \mathrm{C} \ldots+65{ }^{\circ} \mathrm{C}$
to DIN EN 60068,
Part 2-30
Overvoltage category:
Degree of pollution:

Contact elements:

Contact material: AgNi 10, gold-plated Control elements - protection class: IP65 Rated operating voltage U_{r} : max. 24 V
Utilisation category: AC-15/DC-13

Rated operating
current/voltage $\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:

Thermal test current $\left.\right|_{\text {the }}$:
Fuse rating:
Contact system:
Contact force:
Switching of low voltages:
S witching frequency:
R ated insulation voltage U_{i} :
Bounce time:

Mech. lifetime:

- emergency stop:

S witch travel:
Resistance to shocks:
Resistance to vibrations:
Wiring labels:
AC-15: 2 A / 24 VAC
DC-13: 1 A / 24 VDC 2 A
A slow-blow
cross-point system
0.5 N per contact point
$=1 \mathrm{~N}$ per contact $\min .5 \mathrm{~V} / 1 \mathrm{~mA}$

1,200 s/h
$<2 \mathrm{~ms} .60 \mathrm{~V}$
operating speed 1 million operations 100,000 operations approx. 3 mm
$100 \mathrm{~g} / 6 \mathrm{~ms}$
$20 \mathrm{~g}, 10 \ldots 100 \mathrm{~Hz}$ to EN 60947-1

Actuating force at end
of travel ($1 \mathrm{NC} / 1 \mathrm{NO}$):

Control panel BDF 100

Technical data

Illuminated pushbuttons:
Enclosure material: glass-fibre reinforced thermoplastic,
self-extinguishing
Illuminated pushbutton material: all-insulated
Front collar material:
Calotte material:
Illuminated pushbutton -
protection class:
IP 65
Rated operating voltage U_{r} :
Fuse rating:
R ated insulation voltage U_{i} :

$$
\max .24 \mathrm{~V}
$$

Lamp values illuminated pushbutton:
Lamp fitting:
Ba5S
LED replacement:
from front
LED power consumption (actuators): 16 mA
Power consumption indicator lamp, red: 20 mA
Safety classification emergency stop:
Standards:
EN ISO 13849-1
$\mathrm{B}_{10 \mathrm{~d}}$: 100,000
Mission time: 20 years

Contact variants

Emergency stop -

1 NO / 2 NC contacts

MTTF $_{d}=\frac{B_{10 d}}{0,1 \times n_{\text {op }}} \quad n_{\text {op }}=\frac{d_{\text {op }} \times h_{\text {op }} \times 3600 \mathrm{~s} / \mathrm{h}}{\mathrm{t}_{\text {cycle }}}$

Contact symbols shown in non-actuated condition

Contact variants

2 NO contacts (-20)

1 NO / 1 NC contact (-11)

Note

Pin configuration of the connector indicated between brackets

NH / NHK

- Emergency stop latching pushbutton
- Mushroom-shaped plastic pushbutton, $\varnothing 30 \mathrm{~mm}$
- Pull to reset
- 1 NO contact / 2 NC contacts
- Without protective collar: ordering suffix NH
- With protective collar: ordering suffix NHK

- Pushbutton

- With concave button
- Contact surface $19 \times 19 \mathrm{~mm}$
- 2 NO contacts or 1 NO/1 NC contact
- Available in 6 different colours
- Prints on device on request
- Ordering suffix, refer to table below

LM..

- Signalling device

- Illuminated surface $19 \times 19 \mathrm{~mm}$
- Lamp replacement from front
- Available in 5 different colours
- Prints on device on request
- Ordering suffix, refer to table below

- Illuminated pushbutton

- With concave button
- Contact surface $19 \times 19 \mathrm{~mm}$
- 2 NO contacts or 1 NO/1 NC contact
- Lamp replacement from front
- Available in 5 different colours
- Prints on device on request
- Ordering suffix, refer to table below

| Suffix | yellow | red | green | blue | black | white |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Pushbutton DT.. | DTYE | DTRD | DTGN | DTBU | DTBK | DTWH |
| IIluminated pushbutton LT.. | LTYE | LTRD | LTGN | LTBU | | LTWH |
| Signalling device LM. | LMYE | LMRD | LMGN | LMBU | | LMWH |

- Selector switch /

Spring-retum selector switch

- Version with standard knob, anthracite grey - Ordering suffix, refer to table below

SW. 20

- Key-operated selector switch / Spring-return selector switch
- Version with high-grade cylinder lock, therefore IP65 as well
- Ordering suffix, refer to table below

BDF 200

- Slim, shock-resistant plastic enclosure
- Can be fitted onto customary aluminium profile systems
- Can be installed in the most favourable ergonomic position
- Comprehensive selection of illuminated pushbuttons, selector switches, signalling devices with LED, key-operated switches and emergency stop switches/pushbuttons
- Emergency stop, start/stopp and reset functions available
- The position of the switch/pushbutton on the control panel can be chosen
- Two-layer plastic identification labels can be used (engravements on request)
- AS-Interface Safety at Work available

Technical data

Standards:
EN 60947-5-1, EN 60947-5-5

Enclosure:

Enclosure material:
glass-fibre reinforced thermoplastic, self-extinguishing
Enclosure protection class:
IP 65
Cable entry:
1x M20
for cable Ø 6... 13 mm

Ambient conditions:

Ambient temperature:
Climatic resistance:

$$
-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}
$$

to DIN EN 60068,
Part 2-30
Overvoltage category:
Degree of pollution

Contact elements:

Contact material: AgNi 10, gold-plated Control elements - protection class: IP65
Rated operating voltage U_{r}
Utilisation category:
Rated operating
current/voltage $\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Thermal test current $\left.\right|_{\text {the }}$:
Fuse rating:
Contact system:
Contact force:
max. 24 V
AC-15/DC-13
AC-15: 2 A / 24 VAC
DC-13: 1 A / 24 VDC
2.5 A
2.5 A slow-blow
cross-point system
. 5 N per contact point
$=1 \mathrm{~N}$ per contact
S witching of low voltages:
S witching frequency:
min. $5 \mathrm{~V} / 1 \mathrm{~mA}$
Rated insulation voltage U
Bounce time:
$<2 \mathrm{~ms}$ at $100 \mathrm{~mm} / \mathrm{s}$ operating speed
Mech. lifetime:
S witch travel:
Resistance to shocks:
Resistance to vibrations:
Wiring labels:
mion operations approx. 3 mm $100 \mathrm{~g} / 6 \mathrm{~ms}$

Actuating force at end
of travel ($1 \mathrm{NC} / 1 \mathrm{NO}$):
power consumption:

- LED (operating elements):	16 mA
- indicator lamp, red:	20 mA

Technical data

Illuminated pushbuttons:

Enclosure material: glass-fibre reinforced thermoplastic, self-extinguishing
Illuminated pushbutton material: all-insulated
Front collar material: plastic
Calotte material: plastic
Illuminated pushbutton -
protection class: IP65

Rated operating voltage $U_{r}: \quad \max .24 \mathrm{~V}$
Fuse rating: $\quad 2.5$ A slow-blow
Rated insulation voltage U_{i} : $\quad 60 \mathrm{~V}$
Wiring labels: to DIN EN 50005 or DIN EN 50013: X1/X2

Lamp values illuminated pushbutton:

Lamp fitting: Ba5S
LED replacement: from front
LED power consumption of
(operating elements):
16 mA
Power consumption of
indicator lamp, red:
20 mA

Safety classification

emergency stop:

Standards: EN ISO 13849-1
$\mathrm{B}_{10 \mathrm{~d}}$: 100,000
Mission time: 20 years

MTTF $_{\mathrm{d}}=\frac{\mathrm{B}_{10 \mathrm{~d}}}{0,1 \times \mathrm{n}_{\text {op }}} \quad \mathrm{n}_{\text {op }}=\frac{\mathrm{d}_{\text {op }} \times \mathrm{h}_{\text {op }} \times 3600 \mathrm{~s} / \mathrm{h}}{\mathrm{t}_{\text {cycle }}}$

Approvals

(14) ${ }^{\text {us }}$		
Ordering detrils		
BDF 200-(1-(2)-(3)-(4)-(5)		
No.	Option	Description
(1)	NH	Emergency stop latching pushbutton without protective collar
	NHK	with protective collar
	\cdots	Operating element pos. 1
(2)	20 *	2 NO contacts
	11 *	1 NO/ 1 NC contact
	10 *	1 NO contact
(3) (4) (5) (6)	...	Operating element pos. 2
	...	Operating element pos. 3
	...	Operating element pos. 4
		Without indicator lamp
	G24	With indicator lamp, red (only for -10)

Note

Unused positions are labelled „B" and are sealed with a blanking plug in factory.

* Contact variant -20, -11 or -10 continuous for all positions (exception: emergency stop with 1 NO / 2 NC contacts)
Contact variants -20, -11 or -10 cannot be combined to each other

Example:
BDF 200-NH-20-DTYE-B-LMGN

The description of the suitable control elements can be found as of page 106

Note

Possible equipment of the positions 1 to 4, refer to bable page 105.

Control panel BDF 200

Description of the control elements, as of page 106.

Note

The colour of the upper enclosure cap basically is yellow when the emergency stop command devices NH and NHK are used. If there is no control element in position 1, the control panel is supplied with a black enclosure cap.

NH / NHK

- Emergency stop latching pushbutton
- Mushroom-shaped plastic pushbutton, $\varnothing 30 \mathrm{~mm}$
- Pull to reset
- 1 NO contact / 2 NC contacts
- Without protective collar: ordering suffix NH
- With protective collar: ordering suffix NHK

Pushbutton

- With concave button
- Contact surface $19 \times 19 \mathrm{~mm}$
- 2 NO contacts or 1 NO/1 NC contact
- Available in 6 different colours
- Prints on device on request
- Ordering suffix, refer to table below

LM.

-Signalling device

- Illuminated surface $19 \times 19 \mathrm{~mm}$
- Lamp replacement from front
- Available in 5 different colours
- Prints on device on request
- Ordering suffix, refer to table below

PT..

- Mushroom-shaped pushbutton

- Contact surface $25 \times 25 \mathrm{~mm}$
with rounded sides
- Not latching
- 2 NO contacts or 1 NO/1 NC contact
- Available in 6 different colours
- Prints on device on request
- Ordering suffix, refer to table below

- Illuminated pushbutton
- With concave button
- Contact surface $19 \times 19 \mathrm{~mm}$
- 2 NO contacts or 1 NO/1 NC contact
- Lamp replacement from front
- Available in 5 different colours
- Prints on device on request
- Ordering suffix, refer to table below

Suffix	yellow	red	green	blue	black	white
Mushroom-shaped pushbutton PT..	PTYE	PTRD	PTGN	PTBU	PTBK	PTWH
Pushbutton DT..	DTYE	DTRD	DTGN	DTBU	DTBK	DTWH
Illuminated pushbutton LT..	LTYE	LTRD	LTGN	LTBU		LTWH
Signalling device LM..	LMYE	LMRD	LMGN	LMBU		LMWH

- Selector switch /

Spring-retum selector switch

- Version with standard knob, anthracite grey - Ordering suffix, refer to table below

W. 1

- Selector switch /

Spring-return selector switch

- Version with long knob, anthracite grey
- Ordering suffix, refer to table below

SW. 20

- Key-operated selector switch /

Spring-return selector switch

- Version with high-grade cylinder lock, therefore IP65 as well
- Ordering suffix, refer to table below

B DF 200-NH-11-...

1 NO / 2 NC contacts
for emergency stop at Pos. 1
1 NO / 1 NC contact
for operating elements at Pos. 2-4

B DF 200-NH-20-...

1 NO / 2 NC contacts
for emergency stop at Pos. 1

2 NO contacts
for operating elements at Pos. 2-4

B DF 200-NH-10-...

2 NC contacts
for emergency stop at Pos. 1
and indicator lamp (red)

1 NO contact
for operating elements at Pos. 2-4 and indicator lamp (red)

Terminal configuration

Terminal configuration

Terminal configuration

B DF 200-..-11-...

1 NO / 1 NC contact
for operating elements at Pos. 1-4

Terminal configuration

Terminal configuration

B DF 200-..-10-...

1 NO contact
for operating elements at Pos. 1-4 and indicator lamp (red)

Terminal configuration

Control panel BDF 200

System components

MP BDF 200-10

Ordering detrils

Mounting plate for AZ/AZM 200 and BDF 200 MP BDF 200-10 101213759

Mounting plate for actuator AZ/AZM 200-B30 MP BDF 200-30

Set of mounting plates
MP BDF 200
101214126

Connectors M12, 8-pole for CSS 34, CSP 34, CSS 30S, CSS 300, RSS 36

Connecting cables with female connector IP67, M12, 8-pole - 8×0.23 mm 2
Cable length 2.5 m
101209963
Cable length 5 m
101209964
Cable length 10 m
101209960
IP69K, M12, 8-pole - 8×0.21 mm 2
Cable length 5 m
101210560
Cable length 5 m , angled
101210561

Function of the safety switchgear

			integrated connector	Schmersal connectors or of the integrated cable	connector	
	with conventional diagnostic output	with serial diagnostics			$\begin{gathered} \text { according to } \\ \text { EN 60947-5-2: } \\ 2008 \end{gathered}$	to DIN 47100
A1	U_{e}		1	BN	BN	WH
X1	Safety input 1		2	WH	WH	BN
A2	GND		3	BU	BU	GN
Y1	Safety output 1		4	BK	BK	YE
OUT	Diagnostic output	SD output	5	GY	GY	GY
X2	Safety input 2		6	VT	PK	PK
Y2	Safety output 2		7	RD	VT	BU
IN	CSP 34F2: On-site acknowledgment; others: without function	SD input	8	PK	OR	RD

| Pin configu- \mid ration of the Colour code of the Schmersal

Possible coulour codes of other customary

Accessories - Connectors

Connectors M12, 8-pole for AZ/AZM 200, MFM 100, MFM 120

	Funct	n of the safety swi	gear	Pin configura-	Colour code of the	Possible coulo other customar	ur codes of y connector
${ }_{4}^{4} \frac{5}{600} 6$		with conventional diagnostic output	with serial diagnostics	tion of the integrated connector	Schmersal connectors	$\begin{gathered} \text { according to } \\ \text { EN 60947-5-2: } \\ 2007 \end{gathered}$	$\begin{gathered} \text { to } \\ \text { DIN } 47100 \end{gathered}$
$3\left(\begin{array}{lll}0 & 0 & 0\end{array}\right.$	A1	U		1	BN	BN	WH
\bigcirc	X1	Safety		2	WH	WH	BN
281	A2	GN		3	BU	BU	GN
	Y1	Safety out		4	BK	BK	YE
	OUT	Diagnostic output	SD output	5	GY	GY	GY
	X2	Safety		6	VT	PK	PK
Oroeing detrils	Y2	Safety o		7	RD	VT	BU
Connecting cables with female connector IP67, M12, 8 -pole $-8 \times 0.23 \mathrm{~mm}^{2}$	IN	Solenoid control	SD input	8	PK	OR	RD
Cable length 2.5 m 01209963							
Cable length 5 m 101209964							
Cable length 10 m							
IP69K, M12, 8-pole - 8×0.21 mm ${ }^{2}$							
Cable length 5 m 101210560							
Cable length 5 m , angled 101210561							

Legend: Colour code

Code	Colour	Code	Colour	Code	Colour	Code	Colour
BK	black	GN	green	PK	pink	WH	white
BN	brown	GY	grey	RD	red	YE	yellow
BU	blue	OR	orange	VT	purple		

Connectors M23, (8+1)-pole for AZ/AZM 200, MFM 100, MZM 120

Ordering details

Connecting cables with female connector IP67, M23, 8+1-pole - (LIYY) $8 \times 0.75 \mathrm{~mm}^{2}$

Cable length 5 m 101209959
Cable length 10 m 101209958

Connectors without cable

IP67, M23, 8+1-pole

with soldering terminal with crimp terminal

Function of the safety switchgear			Pin configuration of the integrated connector	Wire number of the Schmersal connectors	Possible coulour codes of other customary connector	
	with conventional diagnostic output	with serial diagnostics			according to EN 60947-5-2: 2007	$\begin{array}{\|c\|c} \text { to } \\ \text { DIN } 47100 \end{array}$
A1	$U_{\text {e }}$		1	1	BN	WH
X1	Safety input 1		2	2	WH	BN
A2	GND		3	3	BU	GN
Y1	Safety output 1		4	4	BK	YE
OUT	Diagnostic output	SD output	5	5	GY	GY
X2	Safety input 2		6	6	PK	PK
Y2	Safety output 2		7	7	VT	BU
IN	Solenoid control	SD input	8	8	OR	RD
-	without functio		9			

Legend: Colour code

Code	Colour	Code	Colour	Code	Colour	Code	Colour
BK	black	GN	green	PK	pink	WH	white
BN	brown	GY	grey	RD	red	YE	yellow
BU	blue	OR	orange	VT	purple		

Serial diagnostic for function monitoring

- SD gateway SD-I-DP-V0-2 Page 114
- UNIVERSAL gateway \qquad Page 115
- Y-adapter \qquad Page 116
- T-adapter \qquad Page 117
- SD junction boxes Page 118
- SD cables \qquad Page 119

Advantages of the serial diagnostic function

- Series-wiring of max. 31 different safety switchgear
- Reduction of the wiring expenditure through loop-through diagnostic cable
- Automatic addressing of the safety switchgear on the serial input side
- Automatic and continuous transmission of the operational information of each
participant in the diagnostic chain
- Bidirectional communication, i.e. reading of operational data and unlocking of a solenoid interlock
- Fast and accurate error messages with detailed information about the failure
- Increased availability by announcement of imminent errors when the machine is still running
- Smooth connection to conventional and commercially available PLC systems
- Available for established standard protocols: PROFIBUS, PROFINET, ETHERNET/IP,

DeviceNet, CC-Link, CANopen, Modbus/TCP

Y- or T-adapter and SD-junction box

CSS safety sensors and solenoid interlocks with serial diagnostic function can be wired together in a series-wiring through Y - and T -adapters and commercially available cables with $5 / 8$-pole connectors and plug-in connectors.

SD-junction boxes are preferably suitable for series-wiring of MZM and AZM devices with high power needs. Optionally IP65 enclosure or open design IP00 for control cabinet mounting.

SD-I-DP-V0-2

- PROFIBUS-Gateway for the series-wiring of the diagnostic signals of safety switchgear with integrated SD interface. The status and diagnostic information of the SD devices is transmitted to the control system through the PROFIBUS DP-V0 interface.
- Diagnostic lines of max. 31 safety switching components can be wired in series
- Series-wiring of different components enabled (CSS 34, RSS 36, AZM 200, MZM 100 etc.)
- Reduced wiring expenditure through the series-wiring of the safety channels and the diagnostic lines in the field
- Automatic addressing of the safety switching components in the SD interface
- IP 10 component for quick-fix mounting onto standard DIN rails in the control cabinet

Technical data

PROFIBUS interface:
9-pole D-SUB connector standard PROFIBUS connection (DP-A, DP-B, 5V, GND)

Protocol:	PROFIBUS-DP -V0 upwards compatible
Transmission rate:	9.6 kilo baud ... 12 mega baud
GSD file:	KAS_0b13.GSD
Short-circuit protection:	internal fuse to EN 60127 PolyS witch $0.5 \mathrm{~A} / 60 \mathrm{~V}$
LED indications:	refer to table below
DIP-switch 8-pole:	S1 ... S7: addressing as PROFIBUS slave; S8: automatic addressing of the serial participants
Rated operating voltage U_{e} :	24 VDC, -15 \% / +20 \%
R ated operating current I_{e} :	typically 180 mA , max. 250 mA
Rated insulation voltage U_{i} :	32 V
Rated impulse withstand voltage U:	0.5 kV
Overvoltage category:	
Degree of pollution:	
Storage temperature range:	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$, non-condensing
Operating temperature range:	$-5^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$, non-condensing
Relative humidity:	5\% - 95\%, non-condensing
Protection class:	IP 10

Resistance to vibration: $\quad 5 \ldots 9 \mathrm{~Hz} / 3.5 \mathrm{~mm}$ (to IEC 60068-2-6)
9 ... $150 \mathrm{~Hz} / 1 \mathrm{~g}$
Resistance to shock: $\quad 15 \mathrm{~g} / 11 \mathrm{~ms}$ (to IEC 60068-2-27)
EMC rating:
to EN 61000-6-2 (2002)
$4 \mathrm{kV} / 8 \mathrm{kV}$
to EN 61000-4-3: $\quad 10 \mathrm{~V} / \mathrm{m} / 80 \% \mathrm{AM}$
to EN 61000-4-4 (burst): 2 kV DC supply / 1 kV PROFIBUS \& SD-Interface
to EN 61000-4-5 (surge): $\quad 500$ V DC supply / 1 kV PROFIBUS \& SD-Interface
to EN 61000-4-6: 10 V / 80 \% AM
EMC interfering radiation:
to EN 61000-6-4 (2002)
Industrial interfering radiation:
$37 \mathrm{dBIV} / \mathrm{m}$
Electrical connection:
-SD: connection for max. 31 devices in the serial diagnostic

- 24 V : $\quad+24$ VDC voltage supply
- 0 V :

GND of the voltage supply and GND of the diagnostic cable and 24 VDC supply, approx. 300 mA, PELV power supply
LED signals:
"PB" Continuous red Profibus error
"PB"Flashing signal Profibus initialisation
"SD" Continuous red SD Gateway error
"SD" Flashing signal SD Gateway initialisation
"T" Continuous yellow SD initialisation error or 'teach' switch active
"T" Flashing signal Initialisation error SD participant addresses, teaching required
"ON" Continuous green

Approvals

$C \in$

Ordering details
SD-I-DP-V0-2

SD-I-U- ...

- UNIVERSAL-Gateway for the series-wiring of the diagnostic signals from safety switching components with integrated SD interface. Comprehensive status and diagnostic data from the SD components are transmitted to the control system through the field bus interface.
- Diagnostic lines of max. 31 safety switching components can be wired in series
- Series-wiring of different components enabled (CSS 34, RSS 36, AZM 200, MZM 100 etc.)
- Reduced wiring expenditure through the series-wiring of the safety channels and the diagnostic lines in the field
- Automatic addressing of the safety switching components in the SD interface
- IP20 component for quick-fix mounting onto standard DIN rails in the control cabinet

Technical data

Operating voltage:
24 VDC $-15 \% /+20 \%$ (stabilised PELV)
Fuse rating:
Operating current at 24 VDC : external fuse 1 A slow-blow

Operating temperature range:
Storage temperature range:
Climatic stress:
Protection class:
Mounting location:
Resistance to vibrations:
to IEC 60068-2-6
Restistance to shock
to IEC 60068-2-29:
EMC rating:
to EN 61000-4-2 (ESD)
$\pm 6 \mathrm{kV}$ contact discharge / $\pm 8 \mathrm{kV}$ Air discharge
to EN 61000-4-3 (HF field)
to EN 61000-4-4 (Burst)
to EN 61000-4-5 (Surge)
$10 \mathrm{~V} / \mathrm{m} / 80 \% \mathrm{AM}$ $\pm 1 \mathrm{kV}$ all connections $\pm 1 \mathrm{kV}$ all connections

EMC interfering radiation:

to EN 61000-6-4 (2002)
industrial interfering radiation
Rated insulation voltage U_{i}
Rated impulse withstand voltage $\mathrm{U}_{\text {imp: }}: 0.5 \mathrm{kV}$
Overvoltage category: II
Degree of pollution: 2

Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$):
$50 \times 100 \times 80 \mathrm{~mm}$
(=mounting height starting from rail)

Available FIELD BUS interfaces:

- PROFINETIO
-EtherNet IP
- DeviceNet
- CC-Link
-CANopen
- Modbus/TCP
 \section*{Approvals
 \section*{Approvals
 C}

Ordering details
SD-I-U-(1)

No.	Option	Description
(1)	PN	PROFINETIO
	EIP	EtherNet IP
	DN	DeviceNet
	CCL	CC-Link
	CAN	CANopen
	MT	Modbus/TCP

Wiring diagram

Serial diagnostic - Accessories for series-wiring with serial diagnostic

Y-adapter CSS-Y-8P

- Enables the series-wiring of sensors and solenoid interlocks with SD interface. To that effect, both the safety channels and the serial diagnostic lines are wired in series.
- For the wiring, M12 cable extensions can be used. The voltage drop (due to the cable length, cable section, voltage drop per sensor) should be taken into account, as it reduces the maximum number of safety sensors and interlocks with SD interface that can be wired in series.

Terminal connector

- Supplies the safety channels with operating voltage
- Leads the SD interface back to the control cabinet to connect further SD participants of other safety circuits

Approvals

Ordering details
Y-adapter CsS-Y-8P

Approvals

Ordering details
Terminal connector CSS-Y-A-8P

Wiring diagram

T-adapter CSS-T

- Enables the series-wiring of safety sensors. To this end, both the safety channels and the serial diagnostic cable are wired in series.
- For the wiring, M12 cable extensions can be used. The voltage drop (due to the cable length, cable section, voltage drop per sensor) should be taken into account, as it reduces the maximum number of safety sensors that can be wired in series.

Terminal connector

- Supplies the safety channels with operating voltage

Technical data

Rated operating voltage of the SD devices
to be connected:
Rated operating current
of the SD devices
to be connected:
Fuse of the connecting
cables (circuit breaker):
Ambient temperature $\mathrm{T}_{\mathrm{u}}: \quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Approvals

Ordering detailsT-adapter
C ϵ

C

Approvals

Ordering details

CSS-T Terminal connector

(ϵ

Wiring diagram

SD-2V-F-SK

- For field applications, junction box for

2 components, with screw terminals

- The terminals of the junction box are located in a closed enclosure

SD-2V-S-SK

- For control cabinet mounting, junction box for 2 components, with screw terminals
- Enables wiring in the control cabinet onto standard DIN rails

Technical data

Standards:	VDE 0100 Enclosure: thermoplastic,
Protection class:	Self-extinguishing SD-2V-F-SK: IP 65
SD-2V-S-SK: IP 00	
to EN 60529	

Electrical data:

Rated operating
voltage U_{e} :
24 VDC -15\% / +10\% (stabilised PELV)
Rated operating current I_{e}
Rated impulse withstand
voltage $\mathrm{U}_{\text {imp }}$:
Rated insulation voltage U_{i} : $\quad 32$ VDC
Fuse rating:

Approvals

(ϵ
 Ordering details

SD junction box for field applications

Approvals

Ordering details

SD junction box for
control cabinet mounting
SD-2V-S-SK

Serial diagnostic - Accessories for series-wiring with serial diagnostic
Connectors M12, 8-pole, for SD connection through Y-adapters

Ordering details

IP67, M12, 8 -pole, $8 \times 0,23 \mathrm{~mm}^{2}$

Cable length $0,5 \mathrm{~m}$ Cable length $1,0 \mathrm{~m}$ Cable length $1,5 \mathrm{~m}$ Cable length $2,5 \mathrm{~m}$ Cable length $5,0 \mathrm{~m}$

101217786
101217787
101217788
101217789
101217790

A basket full of solutions

 Food

Safety controllers for electronic safety switches, interlocks and sensors

- PROTECT SRBs \qquad Page 124
- PROTECT PE \qquad Page 140
- PROTECT PSC \qquad Page 142
- PROTECT SELECT \qquad Page 147

Overview of the application-related features:

Apart from the conventional safety controllers, the Schmersal Group also offers microprocessorcontrolled safety technology.

Depending on the complexity and the number of safety circuits, integral solutions with safety monitoring modules, safety controls or safety field bus systems featuring many visualisation and diagnostic possibilities are available.

Safety controllers

The table lists the programme of safety controllers, which are recommended for use with electronic safety sensors, solenoid interlocks and safety switches.

Type	Operating voltage	$\begin{aligned} & \text { EN ISO } \\ & \text { 13849-1 } \end{aligned}$	Sensor inputs	Safety release	Diagnostic contacts	Diagnostic outputs	Reset options	Refer to page
SRB 031MC	24 VAC/DC	Cat. 4 / PLe	2 P	$3 \times$ Stop 1	$1 \times 2 \mathrm{~A}$	-	- Manual without edge detection - Automatic	124
SRB 201LC	24 VAC/DC	Cat. 4 / PLe	2 P	$2 \times$ Stop 0	-	$1 \times 100 \mathrm{~mA}$	- Manual without edge detection - Automatic	126
SRB 211ST V. 2	24 VAC/DC	Cat. 4 / PLe	2 P	$\begin{aligned} & 2 \times \text { Stop } 0 \\ & 1 \times \text { Stop } 1 \\ & 0,1 \ldots 30 \mathrm{~s} \end{aligned}$ dropout delay	-	$1 \times 100 \mathrm{~mA}$	- Manual with edge detection - Automatic	128
SRB 301MA	24 VAC/DC	Cat. 4 / PLe	2 P	$3 \times$ Stop 0	$1 \times 2 \mathrm{~A}$	-	- Manual with edge detection	130
SRB 301MC	24 VAC/DC	Cat. 4 / PLe	2 P	$3 \times$ Stop 0	$1 \times 2 \mathrm{~A}$	-	- Manual without edge detection - Automatic	132
SRB 301ST V. 2	24 VAC/DC	Cat. 4 / PLe	2 P	$3 \times$ Stop 0	$1 \times 2 \mathrm{~A}$	-	- Manual with edge detection - Automatic	134
SRB 324ST V. 3	24 VAC/DC	Cat. 4 / PLe	2 P	$\begin{aligned} & 3 \times \text { Stop } 0 \\ & 2 \times \text { Stop } 1 \\ & 0,1 \ldots 30 \mathrm{~s} \end{aligned}$ dropout delay	$1 \times 2 \mathrm{~A}$	$3 \times 100 \mathrm{~mA}$	- Manual with edge detection - Automatic	136
SRB 504ST	24 VAC/DC	Cat. 4 / PLe	2 P	$5 \times$ Stop 0	$1 \times 2 \mathrm{~A}$	$3 \times 100 \mathrm{~mA}$	- Manual with edge detection - Automatic	138
PROTECT-PE	24 VAC/DC	Cat. 3 / PL d	4P	Refer to data sheet	$2 \times 2 \mathrm{~A}$	$5 \times 100 \mathrm{~mA}$	- Input expanders only with downstream safety-monitoring module	140

Further details about suitable safety controllers can be found at www.schmersal.net.

Safety controllers

The safety outputs Y1/Y2 must be connected to the safety controller in the following way.

Sensors/Sole- noid interlocks	Safety output 1	Safety output 2
CSS 30/30S/300	Y1	Y2
CSS/CSP 34	Y 1	Y 2
CSS 16/180	Y 1	Y 2
RSS 36	Y 1	Y 2
AZIAZM 200	Y 1	Y 2
MZM 100	Y 1	Y 2
MZM 120	Y 1	Y 2

to be connected to
$\left.\begin{array}{l|c|c|c|c|c|c}\hline \begin{array}{l}\text { Safety } \\ \text { controller }\end{array} & \begin{array}{c}\text { Safety } \\ \text { channel 1 }\end{array} & \begin{array}{c}\text { Safety } \\ \text { channel 2 }\end{array} & \text { Seedback/Start } \\ \text { contact connection }\end{array}\right)$

Note:

The wiring examples are represented with the safety guards closed and in de-energised condition.
Sensor and safety controller require the same mass potential.
The shown application examples are suggestions. The user however must carefully check if the configuration is suitable for his specific application.

SRB 031MC

- Suitable for signal processing of potentialfree outputs, e.g. emergency stop command devices and interlocking devices
- Suitable for signal processing of connected to potentials (AOPDs) and magnetic safety sensors
- 1 or 2 channel control
- 3 safety contacts delayed (factoryconfigurable: $0.4 \mathrm{~s} ; 0.7 \mathrm{~s} ; 1.1 \mathrm{~s} ; 1.5 \mathrm{~s})$
$\bullet 1$ additional acknowledgement output
-Automatic reset function
- Optionally with short-circuit recognition (through switch)
-4 LEDs to show operating conditions

Technical data
Standards: IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508 Automatic or start button Feedback circuit (Y/N): yes
ON delay with automatic start: typ. 100 ms

Drop-out delay in case of emergency stop: Drop-out delay time $\pm 30 \%$ for 24 VDC and duty cycle $>3.5 \mathrm{~s}$
Drop-out delay on "supply failure": Drop-out delay time $\pm 30 \%$ for 24 VDC and duty cycle $>3.5 \mathrm{~s}$
Rated operating voltage $\mathrm{U}_{\mathrm{e}}: \quad 24 \mathrm{VDC}-15 \% /+20 \%$ residual ripple max. 10% 24 VAC $-15 \% /+10 \%$
Frequency range: $50 / 60 \mathrm{~Hz}$
Fuse rating for the operating voltage: Internal electronic protection,

	tripping current $>500 \mathrm{~mA}$, reset after approx. 1 sec
Internal electronic protection $(\mathrm{Y} / \mathrm{N}):$	yes
Power consumption:	max. $2.0 \mathrm{~W} ; 4.9 \mathrm{VA}$

Monitored inputs:

-Short-circuit recognition: optional

- Wire breakage detection: yes
- Earth connection detection: yes
Number of NC contacts:2
Number of NO contacts:$\max .40 \Omega$Outputs:

Stop category:	1
Number of safety contacts:	$3(17-18 ; 27-28 ; 37-38)$
Number of auxiliary contacts:	$1(45-46)$
Max switching capacity of the safety contacts:	230 VAC, 8 A ohmic (inductive in case of

| Max. switching capacity of the safety contacts:
 Max. switching capacity of the auxiliary contacts:
 Utilisation category to EN $60947-5-1:$
 Fuse rating of the safety contacts:
 Fuse rating of the auxiliary contacts:
 Mechanical life:$\quad$$23 \mathrm{VC}-13: 23 \mathrm{VDC}, 2 \mathrm{~V} / 6 \mathrm{~A} ;$
 appropriate protective wiring) |
| :--- | ---: |

Ambient conditions:	
Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Storage and transport temperature: $\quad-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class: Enclosure: IP 40, Terminals: IP 20, Clearance: IP 54
Mounting: \quad Snaps onto standard DIN rail to EN 60715
Connection type: Screw terminals

- min. cable section:	$0.25 \mathrm{~mm}^{2}$
max. cable section.	$2.5 \mathrm{~mm}^{2}$

- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Weight:	250 g

Dimensions (Height x Width \times Depth): $100 \times 22.5 \times 121 \mathrm{~mm}$

Approvals

遊 (14)

C

Ordering details

SRB 031MC-24V-(1)

No.	Option	Description
(1)		Time delay:
	0,4S	0.4 seconds
	0,7S	0.7 seconds
	1,1S	1.1 seconds
	1,5S	1.5 seconds

Classification

Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN $60947-5-1$
PL:	STOP $1:$ up to d
Category:	STOP $1:$ up to 3
PFH value:	STOP $1: \leq 2.00 \times 10^{-7} / h$
SIL:	STOP $1:$ up to 2
Mission time:	20 years

The PFH value of $2.00 \times 10^{-7} / \mathrm{h}$ applies to the combinations of contact load (current through enabling contacts) and number of switching cycles ($\mathrm{n}-\mathrm{op} / \mathrm{y}$) mentioned in the table below. At 365 operating days per year and a 24-hours operation, this results in the below-mentioned switching cycle times (t-cycle) for the relay contacts. Diverging applications upon request.

Contact load	n-op/y	t-cycle
20%	525,600	1.0 min
40%	210,240	2.5 min
60%	75,087	7.0 min
80%	30,918	17.0 min
100%	12,223	43.0 min

Note

Connection of an AZM 200 solenoid interlock to the SRB 031MC safety controller

Wiring diagram

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Supply voltage U_{B}
- Internal operating voltage U_{i}

SRB 201LC

- Suitable for signal processing of potentialfree outputs, e.g. emergency stop command devices, position switches, solenoid interlocks with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- 2 safety contacts, STOP 0
- 1 signalling output
- 3 LEDs to show operating conditions

Technical data
Standards:
Start conditions:
IEC/EN 60204-1, EN 60947-5-1, EN ISO 13849-1, IEC 61508

Feedback circuit (Y/N):
Automatic or start button
typ. 100 ms
Drop-out delay in case of emergency stop: typ. $25 \mathrm{~ms} / \mathrm{max} .30 \mathrm{~ms}$
Drop-out delay on "supply failure": typ. 70 ms
Bridging in case of voltage drops: typ. 60 ms
Rated operating voltage $\mathrm{U}_{\mathrm{e}}: \quad 24$ VDC $-15 \% /+20 \%$, residual ripple max. 10\%; 24 VAC -15\% / +10\%
Frequency range:
Fuse rating for the operating voltage: Internal electronic protection,
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ tripping current $>500 \mathrm{~mA}$, reset after approx. 1 sec
Power consumption: max. 2.0 W / 5.2 VA
Monitored inputs:

- Short-circuit recognition: no
- Wire breakage detection: yes
- Earth connection detection: yes

Number of NO contacts: 0
Number of NC contacts: 2
Max. conduction resistance:
$\max .40 \Omega$
Outputs:
Stop category: 0
Number of safety contacts: 2 (13-14, 23-24)
Number of signalling outputs: 1 (Y1)

Max. switching capacity of the safety contacts: max. $250 \mathrm{~V}, 4 \mathrm{~A}$ ohmic (inductive in case of appropriate protective wiring); min. $5 \mathrm{~V} / 1 \mathrm{~mA}$
Max. switching capacity of the signalling outputs: 24 VDC / 100 mA
Utilisation category to EN 60947-5-1: AC-15: $230 \mathrm{~V} / 2 \mathrm{~A}$
DC-13: $24 \mathrm{~V} / 1 \mathrm{~A}$
Fuse rating of the safety contacts: External ($\left.\mathrm{I}_{\mathrm{k}}=1000 \mathrm{~A}\right)$ to EN 60947-5-1 safety fuse 6 A quick blow, 4 A slow blow Internal electronic protection, tripping current > 100 mA
Mechanical life:
10 million operations

Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class:	Enclosure: IP40, Terminals: IP20, Clearance: IP54
Mounting:	Snaps onto standard DIN rail to EN 60715
Connection type:	Screw terminals
- min. cable section:	$0.25 \mathrm{~mm}^{2}$
- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Weight:	160 g
Dimensions (Height \times Width \times Depth):	$100 \times 22.5 \times 121 \mathrm{~mm}$

Approvals

[5
 C

Ordering details

SRB 201LC

Safety controllers

Note

- Input level: The example shows a 2-channel control of a guard door monitoring with two position switches, whereof one with positive break, external reset button \circledR^{\circledR}; cross-wire monitoring and feedback circuit ${ }^{\Perp 2}$.
- The control recognises cable break and earth leakages in the monitoring circuit.
- Relay outputs: Suitable for 2 channel control, for increase in capacity or number of contacts by means of contactors or relays with positive-guided contacts.
- For 1-channel control, connect NC contact to S11/S 12 and bridge S12/S 22
-Automatic start:
The automatic start is programmed by connecting the feedback circuit to the terminals $\mathrm{X} 1 / \mathrm{X} 2$. If the feedback circuit is not required establish a bridge.
- a) = Logic

LED

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Internal operating voltage U

Wiring diagram

Note
-The wiring diagram is shown with guard doors closed and in de-energised condition.

SRB 211ST V. 2

- Suitable for signal processing of potentialfree outputs, e.g. emergency stop command devices, position switches, solenoid interlocks and magnetic safety switches
- Suitable for signal processing of outputs connected to potentials (AOPDs),
e.g. safety light grids/curtains
- 1 or 2 channel control
- 2 safety contacts, STOP 0

1 safety contact, STOP 1

- 1 signalling output (transistor output)
- Optionally with short-circuit recognition, reset with edge detection or automatic start
- 6 LEDs to show operating conditions
- Plug-in screw terminals

Approvals

(ᄌ) C(0) C

Ordering details
SRB 211ST V. 2

Technical data

Standards:
IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Automatic or start button (monitored)
Feedback circuit (Y/N):
ON delay with automatic start: typ. 120 ms
ON delay with reset button: typ. 25 ms

Drop-out delay in case of emergency stop:
Drop-out delay on ,supply failure":
Rated operating voltage U_{e} :
Frequency range:
Fuse rating for the operating voltage:
 tripping current F1: $>750 \mathrm{~mA}$; F2: $>75 \mathrm{~mA}$; reset after disconnection of supply voltage; tripping current F3: $>140 \mathrm{~mA}$
Internal electronic protection $(\mathrm{Y} / \mathrm{N})$:
Power consumption:

Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
- Earth connection detection:yes
Number of NC contacts: 2
Number of NO contacts: 0
Max. conduction resistance: $\max .40 \Omega$

Outputs:

Stop category: 0/1
Number of safety contacts: 3 (STOP 0: 13-14; 23-24)
(STOP 1: 37-38)
Number of signalling outputsMax. switching capacity of the safety contacts:
(STOP 0: 13-14; 23-24) 250 VAC, 8 A ohmic; min. $5 \mathrm{~V}, 5 \mathrm{~mA}$ (STOP 1: 37-38) 250 VAC, 6 A ohmic ; min. $10 \mathrm{~V}, 10 \mathrm{~mA}$ (inductive in case of appropriate protective wiring)

Max. switching capacity of the signalling outputs:

Utilisation category to EN 60947-5-1:
Fuse rating of the safety contacts:

24 VDC, 100 mA AC-15; DC-13
(STOP 0: 13-14; 23-24) 8 A slow blow (STOP 1: 37-38) 6.3 A slow blow Fuse rating of the signalling outputs: Intemal electronic protection, tripping current F4: 100 mA Mechanical life: 10 million operations

Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class:	Enclosure: IP40, Terminals: IP20, Clearance: IP54
Mounting:	Snaps onto standard DIN rail to EN 60715
Connection type:	Screw terminals, plug-in
- min. cable section:	$0.25 \mathrm{~mm}^{2}$
- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Dimensions (Height \times Width \times Depth):	$100 \times 22.5 \times 121 \mathrm{~mm}^{\prime}$

Classification

Safety parameters:

Standards:
PL:
Category:
PFH value:
SIL:
Mission time:
The PFH values of $2.00 \times 10^{-8} / \mathrm{h}$ and $2.00 \times 10^{-7} / \mathrm{h}$ applie to the combinations of contact load (current through enabling contacts) and number of switching cycles (n-op/y) mentioned in the table below. At 365 operating days per year and a 24-hours operation, this results in the below-mentioned switching cycle times (t-cycle) for the relay contacts. Diverging applications upon request.

EN ISO 13849-1, IEC 61508, EN 60947-5-1 STOP 0: up to e; STOP 1: up to d STOP 0: up to 4; STOP 1: up to 3 STOP 0: $\leq 2.00 \times 10^{-8} / \mathrm{h}$; STOP $1: \leq 2.00 \times 10^{-7} / \mathrm{h}$ STOP 0: up to 3; STOP 1: up to 2 20 years

Contact load	n-op/y	t-cycle
20%	525,600	1.0 min
40%	210,240	2.5 min
60%	75,087	7.0 min
80%	30,918	17.0 min
100%	12,223	43.0 min

Note

- Input level: The example shows a 2-channel control of a guard door monitoring with two position switches, whereof one with positive break, external reset button ${ }^{\circledR}$ and feedback circuit ${ }^{(1)}$.
-The control recognises cross-short, cable break and earth leakages in the monitoring circuit.
- F1 = hybrid fuse
- Relay outputs: Suitable for 2 channel control, for increase in capacity or number of contacts by means of contactors or relays with positive-guided contacts.
- Switch setting:

The cross-wire short detection function (factory default) is programmed by means of the switch located underneath the front cover of the module:

Position nQS (top):

no cross-wire short protection, suitable for 1-channel applications and applications with outputs with potential in the control circuits.

Position QS (bottom):

cross-wire short protection, suitable for 2-channel applications without outputs with potential in the control circuits.

- For 1-channel control, connect NC contact to $S 11 / S 12$ and bridge $S 12 / S 22$
- Connect potential p-type outputs of safety light grids/curtains to S12/S22. The devices must have the same reference potential.
- Automatic start:

The automatic start is programmed by connecting the feedback circuit to the terminals X1/X3. If the feedback circuit is not required, establish a bridge.

- Time delay:

The time-delayed safety enable $37 / 38$ is adjustable for 1 to 30 seconds drop-out delay (see setting intructions).

- The safety enabling circuit $37 / 38$ conforms to EN 60204-1 for STOP Category 1. The safety enabling circuits $13 / 14$ and $23 / 24$ conform to EN 60204-1 for STOP Category 0.
- Setting of the drop-out delay time is carried out by means of a potentiometer from the front of the enclosure.

Wiring diagram

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

- Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

SRB 301MA

- Suitable for the signal treatment of potentialfree contacts, e.g. emergency stop command devices, position switches, interlocking devices with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- 3 safety contacts, STOP 0
- 1 additional acknowledgement output
- Reset function with trailing edge
- Optionally with short-circuit recognition (through switch)
- 4 LEDs to show operating conditions

Technical data
Standards:
IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Start button (monitored)
Feedback circuit (Y/N):
yes
ON delay with reset button: typ. 15 ms
Drop-out delay in case of emergency stop: $\leq 15 \mathrm{~ms}$
Drop-out delay on „supply failure": typ. 80 ms

Rated operating voltage $\mathrm{U}_{\mathrm{e}}: \quad 24 \mathrm{VDC}-15 \% /+20 \%$, residual ripple max. 10\%;
24 VAC -15\%/+10\%
Frequency range:
Fuse rating for the operating voltage: Internal electronic protection, tripping current $>500 \mathrm{~mA}$, reset after approx. 1 sec
Internal electronic protection $(\mathrm{Y} / \mathrm{N})$: yes
Power consumption: $\quad 1.8 \mathrm{~W} ; 4.4 \mathrm{VA}$
Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
- Earth connection detection: yes

Number of NC contacts: 2
Number of NO contacts: 0

Max. conduction resistance:
$\max .40 \Omega$

Outputs:

Stop category:	0
Number of safety contacts:	$3(13-14 ; 23-24 ; 33-34)$
Number of auxiliary contacts:	$1(41-42)$

Max. switching capacity of the safety contacts: $\quad 230$ VAC, 8 A ohmic (inductive in case of appropriate protective wiring); min. $10 \mathrm{~V}, 10 \mathrm{~mA}$
Max. switching capacity of the auxiliary contacts: 24 VDC, 2 A
Utilisation category to EN 60947-5-1: AC-15: $230 \mathrm{~V} / 6 \mathrm{~A}$

Fuse rating of the safety contacts: 8 A slow blow
Fuse rating of the auxiliary contacts:
2 A slow blow
Mechanical life: 10 million operations

Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class:	Enclosure: IP40, Terminals: IP20, Clearance: IP54
Mounting:	Snaps onto standard DIN rail to EN 60715
Connection type:	Screw terminals
- min. cable section:	$0.25 \mathrm{~mm}^{2}$
- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Weight:	250 g
Dimensions (Height x Width x Depth):	$100 \times 22.5 \times 121 \mathrm{~mm}$

Approvals

(10) (®)

Ordering details

SRB 301MA

(
Classification
Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN 60947-5-1		
PL:	STOP 0: up to e		
Category:	STOP 0: up to 4		
PFH value:	STOP 0: $\leq 2.00 \times 10^{-8} / \mathrm{h}$		
SIL:	STOP 0: up to 3		
Mission time:	20 years		
The PFH value of $2.00 \times 10^{-8} / \mathrm{h}$ applies to the combinations of contact load (current through enabling contacts) and number of switching cycles (n -op/y) mentioned in the table below.	Contact load	n-op/y	t-cycle
	20 \%	525,600	1.0 min
	40 \%	210,240	2.5 min
At 365 operating days per year and a	60 \%	75,087	7.0 min
24-hours operation, this results in the	80 \%	30,918	17.0 min
below-mentioned switching cycle times	100 \%	12,223	43.0 min

Diverging applications upon request.

Note

Connection of an AZM 200 solenoid interlock to the SRB 301MA safety controller

Wiring diagram

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Supply voltage U_{B}
- Internal operating voltage U_{i}

SRB 301MC

- Suitable for the signal treatment of potentialfree contacts, e.g. emergency stop command devices, position switches, interlocking devices with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- 3 safety contacts, STOP 0
- 1 additional acknowledgement output
- Automatic reset function
- Optionally with short-circuit recognition (through switch)
- 4 LEDs to show operating conditions

Technical data

Standards: IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Automatic or start button
Feedback circuit (Y/N):
ON delay with automatic start: typ. 100 ms
ON delay with reset button: typ. 20 ms
Drop-out delay in case of emergency stop: $\leq 20 \mathrm{~ms}$
Drop-out delay on „supply failure": typ. 80 ms

Rated operating voltage $U_{e}: \quad 24$ VDC $-15 \% /+20 \%$, residual ripple max. 10\%; 24 VAC -15\%/+10\%
Frequency range: $50 / 60 \mathrm{~Hz}$

Fuse rating for the operating voltage: Internal electronic protection, tripping current > 500 mA , reset after approx. 1 sec
Internal electronic protection $(\mathrm{Y} / \mathrm{N})$: yes
Power consumption:
2.0 W; 4.9 VA

Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
Earth connection detection: yes
Number of NC contacts: 2
Number of NO contacts: max. 40Ω
Max. conduction resistance:

Outputs:

Stop category: 0
Number of safety contacts: 3 (13-14; 23-24; 33-34)
Number of auxiliary contacts: 1 (41-42)

Max. switching capacity of the safety contacts: $230 \mathrm{VAC}, 8 \mathrm{~A}$ ohmic (inductive in case of appropriate protective wiring)
Max. switching capacity of the auxiliary contacts: 24 VDC, 2 A
Utilisation category to EN 60947-5-1:
AC-15: $230 \mathrm{~V} / 6 \mathrm{~A}$ DC-13: $24 \mathrm{~V} / 6 \mathrm{~A}$

Fuse rating of the safety contacts:	8 A slow blow
Fuse rating of the auxiliary contacts:	2 A slow blow
Mechanical life:	10 million operations

Mechanical life: 10 million operations

Ambient conditions:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Storage and transport temperature: $\quad-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class: Enclosure: IP40, Terminals: IP20, Clearance: IP54
Mounting: Snaps onto standard DIN rail to EN 60715
Connection type: Screw terminals

- min. cable section: $0.25 \mathrm{~mm}^{2}$
- max. cable section: $2.5 \mathrm{~mm}^{2}$
Weight: 250 g
Dimensions (Height \times Width \times Depth): $100 \times 22.5 \times 121 \mathrm{~mm}$

Approvals

㒾 (14)

(
Ordering details
SRB 301MC-24V

Classification
Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN 60947-5-1		
PL:	STOP 0: up to e		
Category:	STOP 0: up to 4		
PFH value:	STOP 0: $\leq 2.00 \times 10^{-8} / \mathrm{h}$		
SIL:	STOP 0: up to 3		
Mission time:	20 years		
The PFH value of $2.00 \times 10^{-8} / \mathrm{h}$ applies to the combinations of contact load (current through enabling contacts) and number of switching cycles (n -op/y) mentioned in the table below. At 365 operating days per year and a 24-hours operation, this results in the below-mentioned switching cycle times	Contact load	n-op/y	t-cycle
	20 \%	525,600	1.0 min
	40 \%	210,240	2.5 min
	60 \%	75,087	7.0 min
	80 \%	30,918	17.0 min
	100 \%	12,223	43.0 min

Diverging applications upon request

Note

Connection of an AZM 200 solenoid interlock to the SRB 301MC safety controller

Wiring diagram

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Supply voltage U_{B}
- Internal operating voltage U_{i}

Technical data

Standards
IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Automatic or start button (monitored)
Feedback circuit (Y/N):
ON delay with automatic start: typ. 100 ms
ON delay with reset button: typ. 25 ms
Drop-out delay in case of emergency stop: $\leq 25 \mathrm{~ms}$
Drop-out delay on „supply failure": typ. 100 ms

SRB 301ST V. 2

- Suitable for the signal treatment of potentialfree contacts, e.g. emergency stop command devices, position switches, interlocking devices with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- 3 safety contacts, STOP 0
- 1 signalling output (NC contact)
- Optionally with short-circuit recognition (through switch)
- With hybrid fuse
- Reset with edge detection or automatic start
- 4 LEDs to show operating conditions
- Plug-in screw terminals

Rated operating voltage U_{e} :
Frequency range:
Fuse rating for the operating voltage: Internal electronic protection, tripping current F1 > 500 mA ;
tripping current (S11, S21) > 50 mA ; reset after disconnection of supply voltage
Internal electronic protection (Y/N): yes
Power consumption: 2.0 W; 4.9 VA
Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
- Earth connection detection: yes

Number of NC contacts: 2
Number of NO contacts: 0

Max. conduction resistance: $\max .40 \Omega$
Outputs:

Stop category:	0
Number of safety contacts:	$3(13-14 ; 23-24 ; 33-34)$

Number of auxiliary contacts:
1 (41-42)
Max. switching capacity of the safety contacts: $\quad 250 \mathrm{VAC}, 8 \mathrm{~A}$ ohmic (inductive in case of appropriate protective wiring); min. $10 \mathrm{~V}, 10 \mathrm{~mA}$

Max. switching capacity of the auxiliary contacts:	$24 \mathrm{VDC}, 2 \mathrm{~A}$
Utilisation category to EN 60947-5-1:	AC-15; DC-13
Fuse rating of the safety contacts:	8 A slow blow
Fuse rating of the auxiliary contacts:	2 A slow blow
Mechanical life:	10 million operations
Ambient conditions:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Ambient temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Storage and transport temperature:	Enclosure: IP40, Terminals: IP20, Clearance: IP54
Protection class:	Snaps onto standard DIN rail to EN 60715
Mounting:	Screw terminals, plug-in
Connection type:	$0.25 \mathrm{~mm}^{2}$
-min. cable section:	$2.5 \mathrm{~mm}^{2}$
- max. cable section:	240 g
Weight:	$100 \times 22.5 \times 121 \mathrm{~mm}$
Dimensions (Height x Width \times Depth):	

Approvals

중 (①)

C
Ordering details

SRB 301ST V. 2

Classification

Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN 60947-5-1		
PL:		STOP 0: up to e	
Category:		STOP 0: up to 4	
PFH value:		STOP 0: $\leq 2.00 \times 10^{-8} / \mathrm{h}$	
SIL:		STOP 0: up to 3	
Mission time:	20 years		
The PFH value of $2.00 \times 10^{-8} / \mathrm{h}$ applies to the combinations of contact load (current through enabling contacts) and number of switching cycles (n -op/y) mentioned in the table below. At 365 operating days per year and a 24-hours operation, this results in the below-mentioned switching cycle times	Contact load	n-op/y	t-cycle
	20 \%	525,600	1.0 min
	40 \%	210,240	2.5 min
	60 \%	75,087	7.0 min
	80 \%	30,918	17.0 min
	100 \%	12,223	43.0 min

Diverging applications upon request

Note

Connection of an AZM 200 solenoid interlock to the SRB 301ST V. 2 safety controller

LED

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Supply voltage U_{B}
- Internal operating voltage U_{i}

Wiring diagram

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

SRB 324ST V. 3

- Suitable for the signal treatment of potentialfree contacts, e.g. emergency stop command devices, position switches, interlocking devices with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- 3 safety contacts, STOP 0;

2 safety contacts, STOP 1, adjustable $1 \ldots 30$ s

- 4 signalling outputs
- 6 LEDs to show operating conditions
- With hybrid fuse
- Optional: Short-circuit recognition, manual reset with edge detection in fail-safe circuit, automatic reset function

Approvals

C
Ordering details

Technical data

Standards: IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Automatic or start button (monitored)
Feedback circuit (Y/N):
ON delay with automatic start: \quad typ. 400 ms
ON delay with reset button: typ. 30 ms
Drop-out delay in case of emergency stop: (13-14; 23-24; 33-34): $\leq 30 \mathrm{~ms}$

Drop-out delay on „supply failure":
Rated operating voltage U_{e} :

Frequency range: $50 / 60 \mathrm{~Hz}$
Fuse rating for the operating voltage: A (S11-S31) > $800 \mathrm{~mA}(\mathrm{X} 4)$ tripping current F1: > 2.5 A, F2: > $50 \mathrm{~mA}(\mathrm{~S} 11-\mathrm{S} 31)$, > $800 \mathrm{~mA}(\mathrm{X} 4)$; reset after disconnection of supply voltage
nternal electronic protection $(\mathrm{Y} / \mathrm{N})$: yes
Power consumption:
3.2 W; 7.1 VA, plus signalling output

Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
Earth connection detection: yes
Number of NC contacts:2
Number of NO contacts: 0
Max. conduction resistance: $\max .40 \Omega$

Outputs:

Stop category:
Number of safety contacts: 5 (STOP 0: 13-14; 23-24; 33-34)
(STOP 1: 47-48; 57-58)

Number of auxiliary contacts:

1 (61-62)

Number of signalling outputs:
3 (Y1-Y3)
Max. switching capacity of the safety contacts: (STOP 0: 13-14; 23-24; 33-34): 250 VAC, 8 A
(STOP 1: 47-48; 57-58): 250 VAC, 6 A
ohmic (inductive in case of appropriate protective wiring)
Max. switching capacity of the auxiliary contacts: 24 VDC, 2 A
Max. switching capacity of the signalling outputs:
Utilisation category to EN 60947-5-1:
Fuse rating of the safety contacts:
24 VDC, 100 mA ; residual current: 200 mA AC-15; DC-13
(STOP 1: 47-48; 57-58): 6.3 A slow blow
Fuse rating of the auxiliary contacts: 2 A slow blow
Fuse rating of the signalling outputs: 500 mA (internal electronic protection F3)
of the signalling outputs:
10 million operations
Mechanical life:
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$

Protection class: Enclosure: IP40, Terminals: IP20, Clearance: IP54
Mounting: Snaps onto standard DIN rail to EN 60715

Connection type:
Screw terminals, plug-in
Cable section: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
Dimensions (Height \times Width \times Depth): $\quad 100 \times 45 \times 121 \mathrm{~mm}$

Classification

Safety parameters:
Standards:
PL:
EN ISO 13849-1, IEC 61508, EN 60947-5-1 STOP 0: up to e; STOP 1: up to d STOP 0: up to 4; STOP 1: up to 3
Category: $0 \times 10^{-8} / \mathrm{h}$; STOP $1: \leq 2.00 \times 10^{-7} / \mathrm{h}$
FH value:
SIL: STOP 0: up to 3; STOP 1: up to 2
Mission time: 20 years

The PFH values of $2.00 \times 10^{-8} / \mathrm{h}$ and $2.00 \times 10^{-7} / \mathrm{h}$ applie to the combinations of contact load (current through enabling contacts) and number of switching cycles (n-op/y) mentioned in the table below.

\mathbf{n}-op/y	t-cycle
525,600	1.0 min
210,240	2.5 min
75,087	7.0 min
30,918	17.0 min
12,223	43.0 min

At 365 operating days per year and a
12,223 43.0 min

24-hours operation, this results in the below-mentioned switching cycle times (t-cycle) for the relay contacts.
Diverging applications upon request.

Safety controllers

Note

Connection of an AZM 200 solenoid interlock to the SRB 324ST V. 3 safety controller

ㄴ․․

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Position relay K 3
- Position relay K4
- Supply voltage U_{B}
- Internal operating voltage U_{i}

Wiring diagram

Note
-The wiring diagram is shown with guard doors closed and in de-energised condition.

SRB 504ST

- Suitable for signal processing of potentialfree outputs, e.g. emergency stop command devices, interlocking devices, magnetic safety switches and outputs connected to potentials (AOPDs)
- 1 or 2 channel control
- 5 safety contacts, STOP 0
- 4 signalling outputs
- Switching capacity of the safety contacts 6 A
- Automatic reset,
manual reset with edge detection
- 6 LEDs to show operating conditions
- Plug-in screw terminals

Technical data

Standards: IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC 61508
Start conditions:
Automatic or start button (monitored)
Feedback circuit (Y/N):
ON delay with automatic start: typ. 400 ms
ON delay with reset button: typ. 30 ms
Drop-out delay in case of emergency stop: $\leq 30 \mathrm{~ms}$
Drop-out delay on "supply failure": typ. 80 ms
Rated operating voltage Ue: 24 VDC $-15 \% /+20 \%$, residual ripple max. 10%; 24 VAC -15\%/+10\%
Frequency range:
Fuse rating for the operating voltage: tripping current F1: > 2.5 A, F2: > $50 \mathrm{~mA}(\mathrm{~S} 11-\mathrm{S} 31),>800 \mathrm{~mA}(\mathrm{X4}$
Internal electronic protection (Y / N) : yes
Power consumption: $\quad 3.2 \mathrm{~W} ; 7.1 \mathrm{VA}$, plus signalling output

Monitored inputs:

- Short-circuit recognition: optional
- Wire breakage detection: yes
- Earth connection detection: yes
Number of NC contacts: 2
Number of NO contacts: 0

Max. conduction resistance: $\max 40 \Omega$

Outputs:

Stop category:	
Number of safety contacts:	5 (13-14; 23-24; 33-34; 43-44; 53-54)
Number of auxiliary contacts:	1 (61-62)
Number of signalling outputs:	3 (Y1-Y3)
Max. switching capacity of the safety contacts:	250 VAC, 8 A ohmic (inductive in case o appropriate protective wiring
Max. switching capacity of the auxiliary contacts:	24 VDC, 2 A
Max. switching capacity of the signalling outputs:	24 VDC, 100 mA ; residual current: 200 mA
Utilisation category to EN 60947-5-1:	AC-15; DC-13
Fuse rating of the safety contacts:	8 A slow blow
Fuse rating of the auxiliary contacts:	2 A slow blow
Fuse rating of the signalling outputs:	100 mA slow blow
Mechanical life:	10 million operatio

Mechanical life: 10 million operations

Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Protection class:	Enclosure: IP 40, Terminals: IP 20, Clearance: IP 54
Mounting:	Snaps onto standard DIN rail to EN 60715
Connection type:	Screw terminals, plug-in
- min. cable section:	$0.25 \mathrm{~mm}^{2}$
- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Weight:	420 g
Dimensions (Height x Width x Depth):	$100 \times 45 \times 121 \mathrm{~mm}$

Approvals

(ㅏㅇ (®)

Ordering details
SRB 504ST-24V

Classification

Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN 60947-5-1		
PL:		STOP 0: up to e	
Category:		STOP 0: up to 4	
PFH value:		STOP 0	$2.00 \times 10^{-8} / \mathrm{h}$
SIL:		STOP 0: up to 3	
Mission time:			20 years
The PFH value of $2.00 \times 10^{-8} / \mathrm{h}$ applies to the	Contact load	n-op/y	t-cycle
combinations of contact load (current through enabling contacts) and number of switching	20 \%	525,600	1.0 min
cycles (n -op/y) mentioned in the table below.	40 \%	210,240	2.5 min
At 365 operating days per year and a	60 \%	75,087	7.0 min
24 -hours operation, this results in the	80 \%	30,918	17.0 min
below-mentioned switching cycle times	100%	12,223	43.0 min

Diverging applications upon request.

Note

- 2 channel control shown for a guard-door monitor with two contacts, of which at least one contact has positive break, with external reset button ®
- Relay outputs: Suitable for 2 channel control, for increase in capacity or number of contacts by means of contactors or relays with positive-guided contacts.
- ®ㅏ) = Feedback circuit
- The control recognises cross-short, cable break and earth leakages in the monitoring circuit.
- Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

Wiring diagram

LED

The integrated LEDs indicate the following operating states

- Position relay K1
- Position relay K2
- Position relay K3
- Position relay K4
- Supply voltage U_{B}
- Internal operating voltage U_{i}

Note

-The wiring diagram is shown with guard doors closed and in de-energised condition.

PROTECT-PE

- Possibility to connect up to 4 sensors per interface, e.g. safety magnetic switches of the BNS type, emergency stop control devices, interlocking devices, etc.
- Wiring of up to 4 sensors per interface with signals connected to the potential possible, e.g. CSS products from Schmersal and AOPD‘s (only PROTECT-PE-02).
- Current and voltage limitation of the input circuits
- Connection of sensors with 2 NC contacts (PROTECT-PE-02) or of sensors with NC/NO contacts (PROTECT-PE-11)
- Cross-wire monitoring of the input circuits (only PROTECT-PE-02)
- Signalling output for each sensor (monitoring of both circuits of one sensor) and of all sensors (Y 5 , summation signal)
- Signalling output 32-33, 33-34
- Cascading possible for the connection of up to 80 sensors
- Width 65.5 mm
- 6 LED to show operating conditions
- Cage clamps or plug-in screw terminals (ordering suffix -SK)
- With antivalent output contacts, ordering suffix -AN

Technical data

Standards: IEC/EN 60204-1; EN 60947-5-1; EN ISO 13849-1; IEC/EN 61508 Start conditions: automatic
Feedback circuit (Y/N):
ON delay with automatic start: typ. 10 ms
Drop-out delay in case of emergency stop: $\leq 10 \mathrm{~ms}$
Drop-out delay on „supply failure": $\leq 60 \mathrm{~ms}$

Rated operating voltage U_{e} : 24 VDC -15\%/+20\%, residual ripple max. 10\%
Fuse rating for the operating voltage:
Internal electronic trip, tripping current > 300 mA
Internal electronic protection $(\mathrm{Y} / \mathrm{N})$:
Power consumption:
max. 1.7 W; plus signalling outputs

Monitored inputs:

- Short-circuit recognition:	PROTECT-PE-11: option; PROTECT-PE-02: yes
- Wire breakage detection:	yes
- Earth connection detection:	yes
Number of NC contacts:	PROTECT-PE-11: 1; PROTECT-PE-02: 2
Number of NO contacts:	PROTECT-PE-11: 1; PROTECT-PE-02: 0

Outputs:

Stop category:	0
Number of auxiliary contacts:	$2(13-14 ; 23-24)$

Number of signalling outputs: 7 (Y1-Y5; 32-33; 33-34)
Max. switching capacity of the safety contacts: $\quad 24 \mathrm{~V}, 2 \mathrm{~A}$ ohmic (inductive in case

Max. switching capacity of signalling outputs:	24 VDC, 100 mA
Utilisation category to EN 60947-5-1:	DC-13
Fuse rating of	

Fuse rating of the safety contacts: 2 A slow blow
Fuse rating of the signalling outputs: Internal electronic trip,

Mechanical life:

 ripping current > 750 mA
Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Protection class:
Mounting:
Connection type:

Approvals

([1)

C

Ordering details

PROTECT-PE-(1)-(2)
$\begin{array}{l|l|l}\text { No. } & \text { Option } & \text { Description } \\$\cline { 1 - 3 } \& (1) \& 02\end{array} \(\left.\begin{array}{l}Connection of sensors

with 2 NC contacts\end{array}\right\}\)| Connection of sensors |
| :--- |
| with NC/NO contacts |
| Connection of sensors |
| with NC/NO contacts and |
| antivalent output contacts |
| Cage clamps |
| Plug-in screw terminals |

Classification

Safety parameters:

Standards:	EN ISO 13849-1, IEC 61508, EN 60947-5-1		
PL:		STOP 0: up to d	
Category:		STOP 0: up to 3	
PFH value:		STOP 0: $2.00 \times 10^{-7} / \mathrm{h}$	
SIL:		STOP 0: up to 2	
Mission time:	20 years		
The PFH value of $2.00 \times 10^{-7} / \mathrm{h}$ applies to the combinations of contact load (current through enabling contacts) and number of switching cycles (n -op/y) mentioned in the table below.	Contact load	n-op/y	t-cycle
	20 \%	525,600	1.0 min
	40 \%	210,240	2.5 min
At 365 operating days per year and a	60 \%	75,087	7.0 min
24-hours operation, this results in the	80 \%	30,918	17.0 min
below-mentioned switching cycle times	100 \%	12,223	43.0 min

Diverging applications upon request.

Safety controllers

Note

- Start level:

Depends on the wiring of the safety relay module.

- Sensor level:

Dual-channel control of magnetic safety switches according to IEC 60947-5-3.

- Output level:

Dual-channel control of a downstream safety relay module.

- Cross-shorts, wire breakage and earth leakage in the control circuits are detected.
- If the inputs S1, S3, S5 and S7 are not used, they have to be bridged to plus.
- If the inputs S2, S4, S6 and S8 are not used, they have to be bridged to minus.
- The safety relay modules must be suitable signal processing for single or dual-channel floating NC-contacts.
- Start and actuator configuration has to be effected in accordance with the data sheet.
-The obtainable performance level and category according to EN ISO 13849-1 depends on type and wiring of the used safety relay module.

LED

- LED's or signalling outputs signalise an opened protective device or emergency stops.
- Monitoring effected on both contact circuits of the sensor.
- When the protective device or the emergency stop circuit is opened a signal of 24 V will be wired the regarding output (Y1...Y5) and the dedicated LED lights.
The integrated LEDs indicate the following operating states.
- Position relay K1
- Position relay K2
- Position relay K3
- Position relay K4
- Internal operating voltage U_{i}

Wiring diagram

Note

The wiring diagram is shown with guard doors closed and in de-energised condition.
Inductive loads (e.g. contactors, relays, etc.) are to be suppressed by means of a suitable circuit.

Programmable modular safety system

PROTECT PSC

The programmable PROTECT-PSC modular safety control system is mainly used in modern production systems or on complex stand-alone machines.

PROTECT-PSC is suitable both for reliable analysis and interconnection of several safety-related signals, such as those from EMERGENCY-STOP command devices, guard door monitoring, safety multiple infra-red beam barriers (AOPDs) or Schmersal CSS or MZM or AZM 200 series safety sensors.

The modular design of the PROTECT-PSC is a major advantage which makes it very versatile. As far as cost is concerned, the user can provide the optimum solution to each requirement without leaving too many inputs or outputs unused unnecessarily. The very high density of terminals also helps save space in the cabinet.

With PROTECT-PSC, it is possible to realise control category 4 applications according to EN 954-1, Performance Level "e" according to EN 13849-1 and SIL 3 according to EN IEC 61508.

A special feature of PROTECT-PSC is that it also offers the possibility of operational (non-safe) signal processing in addition to safe signal processing.

If programming is abandoned entirely, with PROTECT-PSC, a safe zone area-disconnection must be realised according to the order of the modules on the top-hat rail alone, like a system of safety control modules.

Connectable devices (sensor level)

EMERGENCY STOP devices with floating contacts
©Safety switches with floating contacts, ditto locking devices (with and without interlock) and enabling switches etc.
Safety magnetic switches,
e.g. Schmersal BNS
-Safety devices with floating contacts, such as opto-electronic safety devices (AOPDs) etc.

- Schmersal series CSS safety sensors and Schmersal series non-contact interlocks AZM $2 x x$

The main features summarised:
Modular design
Integration of safe and operational signals

- Free programming according to IEC 61131 via standard USB interface
or
Signal combination via external wiring without programming
Connection option for external gateway (Profibus, DeviceNet or CC-Link) Response time 22 ms (semiconductor outputs) or 37 ms (relay outputs)
Visualisation and status display on module or PC
-Simple DIN top-hat rail mounting

System overview of PROTECT-PSC

The PSC power and PSC-CPU-MON modules with 8 safe inputs and 6 safe outputs form the basic configuration for PROTECT-PSC
(for description, see next page)

Expand safely with:
■ Safe input modules
PSC-S-IN-E and PSC-S-IN-LC
■Safe output modules PSC-S-IN-OUT and PSC Relay
■ Safe input/output modules PSC-SUB-MON, PSC-STP-E, PSC-S-STP-LC and PSC-S-STP-ELC

Expand operationally
(right, grey terminals) with:
■Operational input modules
PSC-NS-IN
■ Operational output modules
PSC-NS-OUT

Gateway

Diagnostic status via gateways to the
following bus systems:

- Profibus DP

DeviceNet
■C-link
Modbus RTU
■CANopen
■ therCat

- Profinet IO

EtherNet IP
Modbus TCP

Programmable modular safety system

PROTECT-PSC module overview

The individual devices of the PROTECT-PSC modular safety system generally differ in their number of safe and operational inputs and outputs. Other differences in terms of the sensor technology (floating or non-floating contacts) are met on the input side or on the output side in terms of semiconductor and relay outputs and maximum switching current.

Module	Number of single-channel inputs			Number of single-channel outputs			
	Operational floating	Safe		Operational$0.3 \text { A** }$	Safe		
		Floating*	Nonfloating*		Transistor		Relays
					0.5 A**	0.3 A**	$4 A^{* *}$
$\begin{aligned} & \text { PSC-CPU-MON } \\ & \text { PSC-CPU-OP-MON } \end{aligned}$	-	4	4	-	6	-	-
PSC-SUB-MON	-	4	4	-	6	-	-
PSC-S-STP-E	-	4	2	-	4	-	
PSC-S-STP-LC	-	-	6	-	4	-	
PSC-S-STP-ELC	-	2	4	-	4	-	
PSC-S relay	-	-	-	-	-	-	2×2
PSC-S-IN-E	-	16	-	-	-	-	-
PSC-S-IN-LC	-	-	16	-	-	-	-
PSC-S-OUT	-	-	-	-	-	16	-
PSC-NS-IN	16	-	-	-	-	-	-
PSC-NS-OUT	-	-	-	16	-	-	-
PSC power	-	-	-	-	-	-	
PSC booster	-	-	-	-	-	-	

* The floating or non-floating data refer to the technical characteristic of the input signals: floating input signals: e.g. from EMERGENCY STOP control devices, safety switches, interlocks and safety magnetic switches etc.
non-floating input signals: e.g. from opto-electronic safety devices such as safety multiple infra-red beam barriers and laser scanners etc., and also from type CSS orAZM 200 safety sensors. Signals from floating sensors can also be connected to these inputs but then cross-circuit monitoring is not possible.
** Maximum current per output with resistive load

PROTECT-PSCsw system software

The advantage of the PROTECT-PSCsw programming interface is that the user can freely program in ladder diagram with maximum flexibility according to IEC 61131 or very easily by including safety and certificated function modules.

There is also the possibility storing their own function modules, such as recurring program blocks, in a library and quickly retrieving them to include in the particular program when needed.

Flexible programming according to ladder diagram according to IEC 61131

Easy programming involving safe and certificated function modules based on PLCopen.

Up-to-date without fail. The online product catalogue

\qquad The compact safety controller PROTECT SELECT offers engineers high flexibility for configuring safety devices and for integrating safety devices into machine functions.

Four different basic programs are available. Each program can easily be adapted to the respective application via menu navigation and cleartext messages. Programming skills are not required. Thus e.g. the drop-out delay and debouncing times can be set individually and numerous parameters such as cross-circuit monitoring can be configured according to the requirements - a clear advantage compared to safety control modules.

All of the four programs offer numerous functions, including the following:
Connection of up to 6 dual-channel safety switching devices (with or without potential) up to PL e/ SIL 3
-S afety semi-conductor and relay outputs with Stop 0 or Stop 1 (adjustable)
■Safe analog monitoring of temperature and other process variables

- Free assignment of feedback circuit, start-up tests, periodic tests, auto start, manual start
- Cross-circuit detection via clock outputs

Display of cleattext messages during troubleshooting
■ Input filter for safety devices with contact bounce

PROTECT SELECT

- Suitable for signal processing of potentialfree outputs, e.g. emergency stop command devices, position switches, solenoid interlocks with and without interlocking function and magnetic safety switches
- Suitable for the signal treatment of potentialloaded outputs, e.g. electronic safety sensors with p-type semi-conductor outputs as well as safety light grids and light curtains
- 1 or 2 channel control
- Safety outputs with Stop $0 / 1$ function and free adjustable fail-safe timer
- Automatic or manual reset function
- Optionally with short-circuit recognition
- Input filter for safety devices with contact bounce
- LEDs to show operating conditions

Technical data

Standards:
EN ISO 13849-1; IEC 61508; EN 62061; EN 60204-1; EN 60947-5-1
Start conditions: Automatic or manual (adjustable)
adjustable
Feedback circuit (Y/N):
Rated operating voltage U_{e} 24 VDC $\pm 10 \%$
Fuse rating for the operating voltage: 3 A slow blow, external
Internal electronic protection (Y / N): yes

Digital safety inputs:

-Short-circuit recognition: optional

- Wire breakage detection: yes
- Earth connection detection: yes

Number of NC contacts, 2 channel: application dependent, max. 6
Number of NC/NO contacts: application dependent, max. 6
Max. conduction resistance: $\max .300 \Omega$

Safe analogue inputs:

Number: 2
Measurement range: 0 ... 10 VDC
Accuracy: typ. 3% (max. cable length $<30 \mathrm{~m}$)
Resolution: 12 Bit

Safety semi-conductor outputs:

Stop category:
0 or 1 (adjustable)
Number (p -/n-type):
Number (p-type):
Max. switching capacity:
24 VDC at 0.7 A; ohmic load, short-circuit proof
Safety relay outputs:
Number: 2 (common access)

Contact load capacity:
AC-1: $250 \mathrm{~V} / 4 \mathrm{~A}$;
AC-15: $230 \mathrm{~V} / 3 \mathrm{~A}$;
DC-1: $24 \mathrm{~V} / 4 \mathrm{~A}$;
DC-13: $24 \mathrm{~V} / 4 \mathrm{~A} / 0.1 \mathrm{~Hz}$

Signalling outputs:

Number: optional 4
Max. switching capacity: $\quad 24$ VDC at 0.1 A ; ohmic load, short-circuit proof
Clock outputs:

Number:	34 VDC at 0.1 A ; ohmic load, short-circuit proof
Max. current at:	$<1.5 \mathrm{~ms}$

$<1.5 \mathrm{~ms}$

Ambient conditions:

Ambient temperature:	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Installation:	vertical, no condensation
Installation compartment:	Earthed, lockable switch cabinet with class of protection IP54
Protection class:	IP 20
Mounting:	S naps onto standard DIN rail to DIN EN 60715
Connection type:	Cage clamps or screw terminals
- min. cable section:	$0.25 \mathrm{~mm}^{2}$
- max. cable section:	$2.5 \mathrm{~mm}^{2}$
Weight:	300 g
Dimensions (Height x Width x Depth)	$100 \times 52.5 \times 118 \mathrm{~mm}$

(ϵ

Ordering detrils

PROTECT SELECT-1

No.	Option	Description
(1)	SK	Screw terminals CC
	Cage clamps	

Classification

Safety parameters:

Standards:
EN ISO 13849-1; IEC 61508; IEC 62061; EN 60947-5-1
PL:
up to e
Category: up to 4
DC: high
CCF: >65 points
SIL CL: up to 3
SFF: $>90 \%$
PFH $: \quad 1,6 \times 10^{-8} / \mathrm{h}$ (Valid for dual channel and 60% relay load)
Mission time: 20 years
Hardware fault tolerance:
Request rate: High and continuous
MTTF $_{d}$ (inputs Hogic + semi-conductor outputs): >100 years
$\mathrm{B}_{10 d}$ value (for one channel of the relay output): \quad Small load range: 20\%: 10.000.000 40\%: 7.500.000
60\%: 2.500.000
80\%: 1.000.000
Maximum load: 100\%: 400.000

Application program 1

One safety area with operating mode switch / enabling switch

The program 1 allows to connect up to four dual-channel safety switching devices, each of which can be bridged by means of operating mode switches and enabling switches. The program is ideally suited for hazardous areas where additional operating modes such as "setting-up mode" and "process monitoring" are facilitating tasks like setting up a machine or troubleshooting.

- Up to 4 safety switching devices can be bridged in conformance with standards
- Additional emergency stop function
- Direct control of a solenoid interlock (lock/unlock)

Clear view onto process
Additional operating modes can be useful e.g. when a machine needs to be set-up or adjusted after a tool change.

Setting-up mode and process monitoring Operating modes such as the setting-up mode and process monitoring can be realised with PROTECT SELECT and application program 1.

Application program 2

Two safety areas

It is often useful to provide two separate safety areas for the particular workplaces on machines. Program 2 has been developed for this application. Here is an example from the packaging machine industry: The upper part of the machine is the work area, where packaging units are fed and packaged.

The lower part of the machine houses the material feed mechanism and the drive units. It must only be accessed for maintenance purposes, but must still be monitored with a safety switching devices. This functionality can be achieved with application program 2 of PROTECT SELECT.

- For up to 2 or 3 safety switching devices per safety area
- Start/reset function for each safety area
- Feedback circuits for each safety area
- Prioritised emergency stop with independent reset function

Work area

The work area can be protected by up to 3 safety switching devices which can be configured individually.

Service / material supply
The area below (or above) the work area is considered to be an independent safety area and is thus configured separately.

Application program 3

One safety area with up to six safety switching devices

Program 3 can be used for processing signals of up to 6 safety switching devices. The application program allows to assign a separate reset function to one of the safety switching devices. This way even the most complex safety areas which are monitored by several safety switching devices can be conveniently configured.

■ or up to 6 safety switching devices

- Direct control of a solenoid interlock
(lock / unlock)
- Prioritised emergency stop with independent reset function

Many switching devices - one evaluation PROTECT SELECT operating in program 3 replaces up to 6 safety control modules and thus helps saving money and space in the control cabinet.

Multi-purpose use
Program 3 is e.g. ideally suited for safety areas which are monitored by several safety switching devices.

Application program 4

One safety area with safe bridging (muting)

In order to ensure a material transport into and out of a safety area without provoking a machine stop, an optoelectronic safety device which is bridged automatically and for a limited amount of time should be used

Usually a safety light-grid with integrated muting function is required for this purpose. When PROTECT SELECT is used, the muting function can be monitored directly via standard safety light-grids and sensors. In addition, signals from 2 other safety switching devices can be processed. This enables the user to realise a complete muting application with e.g. an additional guard door and an emergency stop function.

■ Muting function with standard optoelectronic safety devices

- Flexible muting time parameterization

Connection of additional emergency stop and safety switching device
Direct control of a solenoid interlock (lock / unlock)

Muting boosts productivity

The muting function enables safe monitoring of the access to the hazardous area without interruptions of the material flow or the work flow.

All functions combined in one module All safety functions for safety areas with muting are controlled via one PROTECT SELECT unit - including e.g. a solenoid interlock and an emergency stop function.

Humanity first and foremost. Safety Consulting

Branches

Services

- Safety Consulting
- tec.nicum
- MRL News

For a number of core industries of the machinery and plant construction, we have developed dedicated products and solutions, which do not only optimise the safety level, but the productivity of the machines as well.

We offer, for instance, different series of safety switchgear, which have been developped in accordance with the "Hygienic Design" principles; due to their protection class IP69K, they can be cleaned using high-pressure jet steamers, a commonly used tool in many food-processing companies.

The "Safety Consulting" brochure gives you an overview of our worldwide services. Get informed about the service offer of our Safety Consultants, who can help you for instance with the CE Conformity Declaration process!

In our tec.nicum training centre, we regularly organise interesting seminars, lectures and workshops regarding machinery safety. Request our up-to-date programme!

You can subscribe for free to MRL News, which is regularly published, to keep in touch with the latest substantiated "news" regarding the development of the standards.

The Schmersal Group

For many years the privately owned Schmersal Group has been developing and manufacturing products to enhance occupational safety. What started out with the development and manufacture of a very wide variety of mechanical and non-contact switchgear has now become the world's largest range of safety systems and solutions for the protection of man and machine. Over 1,200 employees in more than 50 countries around the world are developing safety technology solutions in close cooperation with our customers, thus contributing to a safer world.

Motivated by the vision of a safe working environment, the Schmersal Group's engineers are constantly working on the development of new devices and systems for every imaginable application and requirement of the different industries. New safety concepts require new solutions and it is necessary to integrate new detection principles and to discover new paths for the transmission and evaluation of the information provided by these principles. Furthermore, the set of ever more complex standards, regulations and directives relating to machinery safety also requires a change in thinking from the manufacturers and users of machines.

These are the challenges which the Schmersal Group, in partnership with machinery manufacturers, is tackling and will continue to tackle in the future.

Ижевск (3412)26-03-58
Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54
Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Россия (495)268-04-70

Сургут (3462)77-98-35
Тверь (4822)63-31-35 Томск (3822)98-41-5 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

[^0]: Y1 and Y2 = Safety outputs \rightarrow Safety controller

[^1]: ${ }^{1)}$ only for F2 variant with on－site acknowledgment

[^2]: ${ }^{1)}$ after 30 minutes -> failure
 ${ }^{2)}$ refer to flash codes

[^3]: ${ }^{1)}$ after 30 minutes -> failure
 ${ }^{2)}$ refer to flash codes

[^4]: ${ }^{1)} \mathrm{S}$. refer to flash codes
 ${ }^{2)}$ after 30 minutes -> failure

[^5]: ${ }^{1)}$ after 30 minutes -> failure
 ${ }^{2)}$ refer to flash codes

[^6]: ${ }^{1)}$ refer to flash codes
 ${ }^{2)}$ after 30 minutes -> failure

[^7]: ${ }^{1)}$ refer to flash codes
 ${ }^{2)}$ after 30 minutes -> failure

[^8]: Y1 and Y2 = Safety outputs \rightarrow Safety controller
 SD-IN \rightarrow Gateway \rightarrow Field bus

 The safety outputs of the first safety switchgear are connected to the safety-monitoring module
 The serial Diagnostic Gateway is connected to the serial diagnostic input of the first safety switchgear.

[^9]: ${ }^{1)}$ after 30 minutes -> failure
 ${ }^{2)}$ refer to flash codes

[^10]: ${ }^{1)}$ after 30 minutes -> F ailure

[^11]: ${ }^{1)}$ after 30 minutes -> failure

[^12]: ${ }^{1)}$ after 30 minutes $->0 \mathrm{~V}$

